簡易檢索 / 詳目顯示

研究生: 王譽堯
論文名稱: 聚焦型微流道液珠產生器應用於超音波影像對比劑製造
Production of microdroplets by flow focusing microchannel for contrast agent of ultrasound image
指導教授: 曾繁根
口試委員: 黃士豪
李國賓
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 58
中文關鍵詞: 微脂質液珠聚焦型流道超音波對比劑毛細係數雙相流率比
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在眾多腫瘤診斷的技術中,超音波常被使用於臨床醫學診療上,但卻因為缺少適當的影像對比增強劑,無法呈現腫瘤之血管構造,其臨床應用一直無法與電腦斷層或核磁共振掃描相提並論。而以往的超音波對比劑製作,主要是以超音波震盪法來產生,但因為用此法所產生的液珠或氣泡其粒徑分佈較廣,而對於超音波顯像而言,所加入的對比劑尺寸必須與超音波頻率相互搭配才會達到最大效益;若尺寸分佈較大,則較難選擇決定超音波波段用來檢測。
    本實驗使用PDMS及PMMA為基材來製作晶片,主要是利用聚焦型微流道製作出以lipid包覆C6F14的微米液珠,由其內包覆液體沸點較低的特性(58℃),自然於待測物體內受體溫及超音波的影響而氣化形成微氣泡,可減少直接製造微氣泡後因保存不易造成的的不穩定性。本實驗先以便宜的油/水樣本進行效能測試,經過調整多種樣本流率比組合,發現在連續相比分散相流率比值較小的情況下,液珠產生機制不僅由毛細係數控制,亦需加入分散相流率來參考,因而提出針對聚焦型流道的毛細係數相關修正。
    另外,實驗時發現若液珠產生區之頸縮處有雜質堵住,則較易產生微小液珠,但因雜質無法控制尺寸及維持再現性,因此我們在液珠產生區內放置固定大小的PS球作為替代。經觀察發現,PS球可有效降低頸縮處之截面積,因而避免製作微小孔洞之困難製程,並可提高液珠產生之穩定性及減小液珠尺寸。最後,使用本裝置搭配可用於活體超音波顯像實驗之lipid溶液和C6F14製作出可真實注入實驗鼠中之微米級液珠,並觀察產生的液珠與毛細係數及兩相流率比間的關係。
    關鍵字:微脂質液珠、聚焦型流道、超音波對比劑、毛細係數、雙相流率比。


    總目錄 v 表目錄 viii 圖目錄 ix 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 4 第2章 文獻回顧 6 2.1 早期超音波對比劑發展 7 2.2 超音波震盪法微氣泡產生器 8 2.3 多孔膜微氣泡產生器 12 2.4 微流道-T型流道微氣泡產生器 15 2.5 微流道-聚焦型流道微氣泡產生器 18 第3章 微流道裝置設計與製程規劃 23 3.1 微流道裝置設計 23 3.1.1 PDMS晶片設計 23 3.1.2 PMMA晶片設計 24 3.2 微流道裝置製程規劃 25 3.2.1 PDMS晶片流道製作 25 3.2.2 PMMA晶片製作 26 3.3 實驗樣品 28 3.3.1 油水實驗 28 3.3.2 lipid包覆C6F14液珠 28 3.4 實驗架設 30 3.5 聚焦型流道理論 32 第4章 實驗結果 36 4.1 油水實驗(PDMS晶片) 36 4.2 加入PS球之油水實驗 39 4.2.1 實驗材料 39 4.2.2 測試結果 40 4.3 lipid包覆C6F14液珠測試 42 4.3.1 表面未處理之液珠測試結果 42 4.3.2 表面處理為疏水之液珠測試結果 44 4.3.3 表面處理為親水之液珠測試結果 45 4.3.4 壁面親水下之不同流率比lipid液珠實驗 47 4.4 PMMA晶片測試 51 第5章 實驗結論 53 參考資料 55

    [1] Y. Wang, X. Li, Y. Zhou, P. Huang, and Y. Xu, “Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery.”, International journal of pharmaceutics, 384 (2010), 148-53.
    [2] S. H. Huang, W. H. Tan, F. G. Tseng, and S. Takeuchi, “A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems.” , Journal of Micromechanics and Microengineering,(2006), 2336-2344,.
    [3] 張簡上煜, “應用液膜固化技術觀測凱爾文-荷姆霍茲不穩定性動態產生之奈米液珠”, 國立清華大學碩士論文(2008).”
    [4] K. Hettiarachchi, E. Talu, M. L. Longo, P. A. Dayton, and A. P. Lee, “On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging.”, Lab on a chip, 7 (2007), 463-8.”
    [5] P. Garstecki, M. J. Fuerstman, H. A. Stone, and G.. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.”, Lab on a chip, 6 (2006), 437-46.”
    [6] U. Lambrich and H. Schubert, “Emulsification using microporous systems”, Journal of Membrane Science, 257 (2005), 76-84.
    [7] Michinao Hashimoto, Piotr Garstecki, and George M Whitesides, “Synthesis of composite emulsions and complex foams with the use of microfluidic flow-focusing devices.”, Small (Weinheim an der Bergstrasse, Germany), 3 (2007), 1792-802.”
    [8] David Cosgrove, “Ultrasound contrast agents: an overview.”, European journal of radiology, 60 (2006), 324-30.”
    [9] F. Calliada, R. Campani, O. Bottinelli, A. Bozzini, and M. G. Sommaruga, “Ultrasound contrast agents: basic principles.”, European journal of radiology, 27 Suppl 2 (1998), S157-60.
    [10] Schlief R., “Echo-enhancing agents: their physics and pharmacology.” , Advances in Echo Imaging Using Contrast Enhancement, (1997),85–114.
    [11] N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy.”, Journal of the National Cancer Institute, 99 (2007), 1095-106.
    [12] S. H. Cho, J. Y. Kim, J. H. Chun, and J. D. Kim, “Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269 (2005), 28-34.
    [13] Z. Xing, J. Wang, H. Ke, B. Zhao, X. Yue, Z. Dai, and J. Liu, “The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging.”, Nanotechnology, 21 (2010), 145607.
    [14] X. H. Zhang, N. Maeda, and V. S. J. Craig, “Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions.”, Langmuir : the ACS journal of surfaces and colloids, 22 (2006), 5025-35.
    [15] Esra Talu, Kanaka Hettiarachchi, Robert L Powell, Abraham P Lee, Paul a Dayton, and Marjorie L Longo, “Maintaining monodispersity in a microbubble population formed by flow-focusing.”, Langmuir : the ACS journal of surfaces and colloids, 24 (2008), 1745-9.”
    [16] http://www.ntnu.no/ept/lab/microflow
    [17] K. Hettiarachchi, P. Dayton, and A. P. Lee, “Formulation of Monodisperse Contrast Agents in Microfluidic Systems for Ultrasonic Imaging”, 2006 International Conference on Microtechnologies in Medicine and Biology, Ieee (2006), 230-232.
    [18] K. Hettiarachchi, A. P. Lee, S. Zhang, S. Feingold, and P. A. Dayton, “Controllable Microfluidic Synthesis of Multiphase Drug-Carrying Lipospheres for Site-Targeted Therapy”, System (2009).
    [19] J. H. Xu, S. W. Li, Y. J. Wang, and G. S. Luo, “Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device”, Applied Physics Letters, 88 (2006), 133506.”
    [20] C. Chen, Yo. Zhu, P. W. Leech, and R. Manasseh, “Production of monodispersed micron-sized bubbles at high rates in a microfluidic device”, Applied Physics Letters, 95 (2009), 144101.
    [21] L. Wang, Yuxiang Zhang, and Lin Cheng, “Magic microfluidic T-junctions: Valving and bubbling”, Chaos, Solitons & Fractals, Elsevier Ltd, 39 (2009), 1530-1537.
    [22] L. Dai, W. Cai, and F. Xin, “Numerical Study on Bubble Formation of a Gas-Liquid Flow in a T-Junction Microchannel”, Chemical Engineering & Technology, 32 (2009), 1984-1991.”
    [23] T. Nakashima, M. Kukizaki, “Membrane emulsification by microporous glass,” Key Eng. Mater. Vol. 61-62, pp. 513-516, 1991.
    [24] C Charcosset, I Limayem, and H Fessi, “The membrane emulsification process — a review”, Chemical Technology, 218 (2004), 209-218.”
    [25] M. Kukizaki and M. Goto, “Size control of nanobubbles generated from Shirasu-porous-glass ( SPG ) membranes”, Technology, 281 (2006), 386-396.
    [26] M. Kukizaki and T. Wada, “Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317 (2008), 146-154.
    [27] M. Kaya, S. Feingold, K. Hettiarachchi, a. P. Lee, and P. a. Dayton, “Acoustic responses of monodisperse lipid encapsulated microbubble contrast agents produced by flow focusing”, Bubble Science, Engineering & Technology, 2 (2010), 33-40.”
    [28] Shelley L. Anna and Hans C. Mayer, “Microscale tipstreaming in a microfluidic flow focusing device”, Physics of Fluids, 18 (2006), 121512.”

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE