研究生: |
王譽堯 |
---|---|
論文名稱: |
聚焦型微流道液珠產生器應用於超音波影像對比劑製造 Production of microdroplets by flow focusing microchannel for contrast agent of ultrasound image |
指導教授: | 曾繁根 |
口試委員: |
黃士豪
李國賓 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 微脂質液珠 、聚焦型流道 、超音波對比劑 、毛細係數 、雙相流率比 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在眾多腫瘤診斷的技術中,超音波常被使用於臨床醫學診療上,但卻因為缺少適當的影像對比增強劑,無法呈現腫瘤之血管構造,其臨床應用一直無法與電腦斷層或核磁共振掃描相提並論。而以往的超音波對比劑製作,主要是以超音波震盪法來產生,但因為用此法所產生的液珠或氣泡其粒徑分佈較廣,而對於超音波顯像而言,所加入的對比劑尺寸必須與超音波頻率相互搭配才會達到最大效益;若尺寸分佈較大,則較難選擇決定超音波波段用來檢測。
本實驗使用PDMS及PMMA為基材來製作晶片,主要是利用聚焦型微流道製作出以lipid包覆C6F14的微米液珠,由其內包覆液體沸點較低的特性(58℃),自然於待測物體內受體溫及超音波的影響而氣化形成微氣泡,可減少直接製造微氣泡後因保存不易造成的的不穩定性。本實驗先以便宜的油/水樣本進行效能測試,經過調整多種樣本流率比組合,發現在連續相比分散相流率比值較小的情況下,液珠產生機制不僅由毛細係數控制,亦需加入分散相流率來參考,因而提出針對聚焦型流道的毛細係數相關修正。
另外,實驗時發現若液珠產生區之頸縮處有雜質堵住,則較易產生微小液珠,但因雜質無法控制尺寸及維持再現性,因此我們在液珠產生區內放置固定大小的PS球作為替代。經觀察發現,PS球可有效降低頸縮處之截面積,因而避免製作微小孔洞之困難製程,並可提高液珠產生之穩定性及減小液珠尺寸。最後,使用本裝置搭配可用於活體超音波顯像實驗之lipid溶液和C6F14製作出可真實注入實驗鼠中之微米級液珠,並觀察產生的液珠與毛細係數及兩相流率比間的關係。
關鍵字:微脂質液珠、聚焦型流道、超音波對比劑、毛細係數、雙相流率比。
[1] Y. Wang, X. Li, Y. Zhou, P. Huang, and Y. Xu, “Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery.”, International journal of pharmaceutics, 384 (2010), 148-53.
[2] S. H. Huang, W. H. Tan, F. G. Tseng, and S. Takeuchi, “A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems.” , Journal of Micromechanics and Microengineering,(2006), 2336-2344,.
[3] 張簡上煜, “應用液膜固化技術觀測凱爾文-荷姆霍茲不穩定性動態產生之奈米液珠”, 國立清華大學碩士論文(2008).”
[4] K. Hettiarachchi, E. Talu, M. L. Longo, P. A. Dayton, and A. P. Lee, “On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging.”, Lab on a chip, 7 (2007), 463-8.”
[5] P. Garstecki, M. J. Fuerstman, H. A. Stone, and G.. M. Whitesides, “Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.”, Lab on a chip, 6 (2006), 437-46.”
[6] U. Lambrich and H. Schubert, “Emulsification using microporous systems”, Journal of Membrane Science, 257 (2005), 76-84.
[7] Michinao Hashimoto, Piotr Garstecki, and George M Whitesides, “Synthesis of composite emulsions and complex foams with the use of microfluidic flow-focusing devices.”, Small (Weinheim an der Bergstrasse, Germany), 3 (2007), 1792-802.”
[8] David Cosgrove, “Ultrasound contrast agents: an overview.”, European journal of radiology, 60 (2006), 324-30.”
[9] F. Calliada, R. Campani, O. Bottinelli, A. Bozzini, and M. G. Sommaruga, “Ultrasound contrast agents: basic principles.”, European journal of radiology, 27 Suppl 2 (1998), S157-60.
[10] Schlief R., “Echo-enhancing agents: their physics and pharmacology.” , Advances in Echo Imaging Using Contrast Enhancement, (1997),85–114.
[11] N. Rapoport, Z. Gao, and A. Kennedy, “Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy.”, Journal of the National Cancer Institute, 99 (2007), 1095-106.
[12] S. H. Cho, J. Y. Kim, J. H. Chun, and J. D. Kim, “Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269 (2005), 28-34.
[13] Z. Xing, J. Wang, H. Ke, B. Zhao, X. Yue, Z. Dai, and J. Liu, “The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging.”, Nanotechnology, 21 (2010), 145607.
[14] X. H. Zhang, N. Maeda, and V. S. J. Craig, “Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions.”, Langmuir : the ACS journal of surfaces and colloids, 22 (2006), 5025-35.
[15] Esra Talu, Kanaka Hettiarachchi, Robert L Powell, Abraham P Lee, Paul a Dayton, and Marjorie L Longo, “Maintaining monodispersity in a microbubble population formed by flow-focusing.”, Langmuir : the ACS journal of surfaces and colloids, 24 (2008), 1745-9.”
[16] http://www.ntnu.no/ept/lab/microflow
[17] K. Hettiarachchi, P. Dayton, and A. P. Lee, “Formulation of Monodisperse Contrast Agents in Microfluidic Systems for Ultrasonic Imaging”, 2006 International Conference on Microtechnologies in Medicine and Biology, Ieee (2006), 230-232.
[18] K. Hettiarachchi, A. P. Lee, S. Zhang, S. Feingold, and P. A. Dayton, “Controllable Microfluidic Synthesis of Multiphase Drug-Carrying Lipospheres for Site-Targeted Therapy”, System (2009).
[19] J. H. Xu, S. W. Li, Y. J. Wang, and G. S. Luo, “Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device”, Applied Physics Letters, 88 (2006), 133506.”
[20] C. Chen, Yo. Zhu, P. W. Leech, and R. Manasseh, “Production of monodispersed micron-sized bubbles at high rates in a microfluidic device”, Applied Physics Letters, 95 (2009), 144101.
[21] L. Wang, Yuxiang Zhang, and Lin Cheng, “Magic microfluidic T-junctions: Valving and bubbling”, Chaos, Solitons & Fractals, Elsevier Ltd, 39 (2009), 1530-1537.
[22] L. Dai, W. Cai, and F. Xin, “Numerical Study on Bubble Formation of a Gas-Liquid Flow in a T-Junction Microchannel”, Chemical Engineering & Technology, 32 (2009), 1984-1991.”
[23] T. Nakashima, M. Kukizaki, “Membrane emulsification by microporous glass,” Key Eng. Mater. Vol. 61-62, pp. 513-516, 1991.
[24] C Charcosset, I Limayem, and H Fessi, “The membrane emulsification process — a review”, Chemical Technology, 218 (2004), 209-218.”
[25] M. Kukizaki and M. Goto, “Size control of nanobubbles generated from Shirasu-porous-glass ( SPG ) membranes”, Technology, 281 (2006), 386-396.
[26] M. Kukizaki and T. Wada, “Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317 (2008), 146-154.
[27] M. Kaya, S. Feingold, K. Hettiarachchi, a. P. Lee, and P. a. Dayton, “Acoustic responses of monodisperse lipid encapsulated microbubble contrast agents produced by flow focusing”, Bubble Science, Engineering & Technology, 2 (2010), 33-40.”
[28] Shelley L. Anna and Hans C. Mayer, “Microscale tipstreaming in a microfluidic flow focusing device”, Physics of Fluids, 18 (2006), 121512.”