研究生: |
陳育新 Chen, Yu-Hsin |
---|---|
論文名稱: |
具細胞膜附著性之聚脯胺酸骨架的開發 The Development of Membrane-binding Polyproline Scaffolds |
指導教授: |
王聖凱
Wang, Sheng-Kai |
口試委員: |
洪嘉呈
Horng, Jia-Cherng 許銘華 Hsu, Ming-hua |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 聚脯胺酸多肽 、多價交互作用 、細胞膜附著 、醣-蛋白交互作用 |
外文關鍵詞: | polyproline, multivalent interaction, membrane-binding, carbohydrate-protein interaction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有多個結合位的蛋白質在與對應醣基進行結合的時候,醣基間的距離與位置會對多價性結合造成關鍵性的影響。在生物系統中這影響醣-蛋白作用強弱與細胞的辨識。而如果能夠在細胞膜上控制特定醣基相對應的距離,將能影響該細胞對此類蛋白的結合能力,並對其操作。
本論文中主要利用聚脯胺酸具規律的剛性PPII結構作為骨架設計。第一部分以不同數量和長度的碳鏈作為疏水錨,以共軛焦顯微鏡與流式細胞儀觀測得到這些合成多肽在細胞膜的附著程度。以此驗證疏水錨設計帶來的性質變化,實驗後顯示適當改變碳鏈的長度得到不同的附著效果。而在第二部分中,利用第一部分的結論而設計具有複數疏水碳鏈的多肽,並在合成時引入不同官能基側鏈的脯胺酸單體,得以在多肽上設計的位置修飾上特定醣基。以這些具一定細胞膜結合能力的多肽進行細胞實驗嘗試確認它們是否能為細胞帶來更好的蛋白質結合效果。雖然因為部分未完成的實驗無法做出最終結論,但已開發出一種可行的合成策略。若未來能在細胞上成功產生不同的醣-蛋白結合能力,將對設計蛋白質與細胞表面醣基交互作用相關影響的工具有所幫助。
Multivalent interactions involved in strengths of carbohydrate – protein interactions and the recognition in biological system. The positions and the distances between glycans have great influence on binding to proteins with multiple binding sites. Therefore, if we can precisely control glycan ligands at specific positions on cell membrane, we will be able to better manipulate such interactions on cell.
In this research, we used rigid and well-defined polyproline II helix as scaffolds to support glycan ligands. In the first part, we introduced alkyl chains of different lengths as hydrophobic anchors for polyproline to bind to cell membrane. We evaluated the binding strength of these peptides on cell membrane with confocal microscopy and flow cytometry, and found that appropriate adjustment on the the length of hydrophobic chains alters cell binding. In the second part, we took the design from the first part, and introduced glycan ligands at specific positions. Although the measurement of carbohydrate - protein interactions on control distance was not achieved, this research provides a synthetic strategy for polyproline scaffolds that bind to cell membrane while controlling glycan ligand distance. The information provided could benefit future recognition research on cell membrane.
1. Bhatia, S.; Camacho, L. C.; Haag, R., Pathogen Inhibition by Multivalent Ligand Architectures. J. Am. Chem. Soc. 2016, 138 (28), 8654-8666.
2. Vasta, G. R.; Ahmed, H.; Nita-Lazar, M.; Banerjee, A.; Pasek, M.; Shridhar, S.; Guha, P.; Fernandez-Robledo, J. A., Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox. Front Immunol 2012, 3, 199.
3. Mandal, D. K.; Bhattacharyya, L.; Koenig, S. H.; Brown, R. D.; Oscarson, S.; Brewer, C. F., Studies of the Binding Specificity of Concanavalin A. Nature of the Extended Binding Site for Asparagine-Linked Carbohydrates. Biochemistry 1994, 33 (5), 1157-1162.
4. Trastoy, B.; Bonsor, D. A.; Pérez-Ojeda, M. E.; Jimeno, M. L.; Méndez-Ardoy, A.; García Fernández, J. M.; Sundberg, E. J.; Chiara, J. L., Synthesis and Biophysical Study of Disassembling Nanohybrid Bioconjugates with a Cubic Octasilsesquioxane Core. Adv. Funct. Mater. 2012, 22 (15), 3191-3201.
5. Wang, L.-X., Synthetic carbohydrate antigens for HIV vaccine design. Curr. Opin. Chem. Biol. 2013, 17 (6), 997-1005.
6. Scanlan, C. N.; Pantophlet, R.; Wormald, M. R.; Ollmann Saphire, E.; Stanfield, R.; Wilson, I. A.; Katinger, H.; Dwek, R. A.; Rudd, P. M.; Burton, D. R., The Broadly Neutralizing Anti-Human Immunodeficiency Virus Type 1 Antibody 2G12 Recognizes a Cluster of α1→2 Mannose Residues on the Outer Face of gp120. J. Virol. 2002, 76 (14), 7306.
7. Deeks, S. G.; Overbaugh, J.; Phillips, A.; Buchbinder, S., HIV infection. Nat. Rev. Dis. Primers 2015, 1, 15035.
8. West, A. P.; Galimidi, R. P.; Foglesong, C. P.; Gnanapragasam, P. N. P.; Huey-Tubman, K. E.; Klein, J. S.; Suzuki, M. D.; Tiangco, N. E.; Vielmetter, J.; Bjorkman, P. J., Design and Expression of a Dimeric Form of Human Immunodeficiency Virus Type 1 Antibody 2G12 with Increased Neutralization Potency. J. Virol. 2009, 83 (1), 98.
9. Calarese, D. A.; Scanlan, C. N.; Zwick, M. B.; Deechongkit, S.; Mimura, Y.; Kunert, R.; Zhu, P.; Wormald, M. R.; Stanfield, R. L.; Roux, K. H.; Kelly, J. W.; Rudd, P. M.; Dwek, R. A.; Katinger, H.; Burton, D. R.; Wilson, I. A., Antibody Domain Exchange Is an Immunological Solution to Carbohydrate Cluster Recognition. Science 2003, 300 (5628), 2065.
10. Bhatia, S.; Dimde, M.; Haag, R., Multivalent glycoconjugates as vaccines and potential drug candidates. Med. Chem. Commun. 2014, 5 (7), 862-878.
11. Gestwicki, J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.; Kiessling, L. L., Influencing Receptor−Ligand Binding Mechanisms with Multivalent Ligand Architecture. J. Am. Chem. Soc. 2002, 124 (50), 14922-14933.
12. Astronomo, R. D.; Burton, D. R., Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat. Rev. Drug Discovery 2010, 9 (4), 308-324.
13. Durka, M.; Buffet, K.; Iehl, J.; Holler, M.; Nierengarten, J.-F.; Vincent, S. P., The Inhibition of Liposaccharide Heptosyltransferase WaaC with Multivalent Glycosylated Fullerenes: A New Mode of Glycosyltransferase Inhibition. Chem. - Eur. J. 2012, 18 (2), 641-651.
14. Krauss, I. J.; Joyce, J. G.; Finnefrock, A. C.; Song, H. C.; Dudkin, V. Y.; Geng, X.; Warren, J. D.; Chastain, M.; Shiver, J. W.; Danishefsky, S. J., Fully Synthetic Carbohydrate HIV Antigens Designed on the Logic of the 2G12 Antibody. J. Am. Chem. Soc. 2007, 129 (36), 11042-11044.
15. Wang, S.-K.; Liang, P.-H.; Astronomo, R. D.; Hsu, T.-L.; Hsieh, S.-L.; Burton, D. R.; Wong, C.-H., Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (10), 3690-3695.
16. Astronomo, R. D.; Kaltgrad, E.; Udit, A. K.; Wang, S.-K.; Doores, K. J.; Huang, C.-Y.; Pantophlet, R.; Paulson, J. C.; Wong, C.-H.; Finn, M. G.; Burton, D. R., Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. Chem Biol 2010, 17 (4), 357-370.
17. Esipova, N. G.; Tumanyan, V. G., Omnipresence of the polyproline II helix in fibrous and globular proteins. Curr. Opin. Struct. Biol. 2017, 42, 41-49.
18. Ruggiero, M. T.; Sibik, J.; Orlando, R.; Zeitler, J. A.; Korter, T. M., Measuring the Elasticity of Poly-l-Proline Helices with Terahertz Spectroscopy. Angew. Chem. Int. Ed. 2016, 55 (24), 6877-6881.
19. Wilhelm, P.; Lewandowski, B.; Trapp, N.; Wennemers, H., A Crystal Structure of an Oligoproline PPII-Helix, at Last. J. Am. Chem. Soc. 2014, 136 (45), 15829-15832.
20. Nagel, Y. A.; Raschle, P. S.; Wennemers, H., Effect of Preorganized Charge-Display on the Cell-Penetrating Properties of Cationic Peptides. Angew. Chem. Int. Ed. Engl. 2017, 56 (1), 122-126.
21. Lin, T. H.; Lin, C. H.; Liu, Y. J.; Huang, C. Y.; Lin, Y. C.; Wang, S. K., Controlling Ligand Spacing on Surface: Polyproline-Based Fluorous Microarray as a Tool in Spatial Specificity Analysis and Inhibitor Development for Carbohydrate-Protein Interactions. ACS Appl. Mater. Interfaces 2017, 9 (48), 41691-41699.
22. Griffin, M. E.; Hsieh-Wilson, L. C., Glycan Engineering for Cell and Developmental Biology. Cell Chem Biol 2016, 23 (1), 108-121.
23. Nischan, N.; Kohler, J. J., Advances in cell surface glycoengineering reveal biological function. Glycobiology 2016, 26 (8), 789-96.
24. Fields, G. B., Introduction to peptide synthesis. Curr. Protoc. Protein Sci. 2002, Chapter 18, Unit-18.1.
25. Palomo, J. M., Solid-phase peptide synthesis: an overview focused on the preparation of biologically relevant peptides. RSC Adv. 2014, 4 (62), 32658-32672.
26. Barany, G.; Kneib‐Cordonier, N.; Mullen, D. G., Polypeptide Synthesis, Solid-Phase Method. In Encyclopedia of Polymer Science and Technology, 2004.
27. Tulla‐Puche, J.; El‐Faham, A.; Galanis, A. S.; de Oliveira, E.; Zompra, A. A.; Albericio, F., Methods for the Peptide Synthesis and Analysis. In Peptide Chemistry and Drug Design, Dunn, B. M., Ed. 2015.
28. Lopes, J. L. S.; Miles, A. J.; Whitmore, L.; Wallace, B. A., Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: applications in secondary structure analyses. Protein Sci. 2014, 23 (12), 1765-1772.
29. Arndt, N. X.; Tiralongo, J.; Madge, P. D.; von Itzstein, M.; Day, C. J., Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines. J. Cell. Biochem. 2011, 112 (9), 2230-2240.
30. Llanes, P.; Rodríguez-Escrich, C.; Sayalero, S.; Pericàs, M. A., Organocatalytic Enantioselective Continuous-Flow Cyclopropanation. Org. Lett. 2016, 18 (24), 6292-6295.
31. Kümin, M.; Sonntag, L.-S.; Wennemers, H., Azidoproline Containing Helices: Stabilization of the Polyproline II Structure by a Functionalizable Group. J. Am. Chem. Soc. 2007, 129 (3), 466-467.
32. Le Quement, S. T.; Ishoey, M.; Petersen, M. T.; Thastrup, J.; Hagel, G.; Nielsen, T. E., Solid-Phase Synthesis of Smac Peptidomimetics Incorporating Triazoloprolines and Biarylalanines. ACS Comb. Sci. 2011, 13 (6), 667-675.
33. Cui, B.; Yu, J.; Yu, F.-C.; Li, Y.-M.; Chang, K.-J.; Shen, Y., Synthesis of (1R,4R)-2,5-diazabicyclo[2.2.1]heptane derivatives by an epimerization–lactamization cascade reaction. RSC Adv. 2015, 5 (14), 10386-10392.