簡易檢索 / 詳目顯示

研究生: 姚政陞
Yao, Cheng-Sheng.
論文名稱: 探討社會地位及虛擬實驗對國中學生科學學習動機及電學概念學習的影響
Exploring the Impact of Social Status and Virtual Experiments on Junior High School Students’ Motivation for Science Learning and Their Understanding of Electrical Concepts.
指導教授: 林裕仁
Lin, Yu-Ren
口試委員: 陳聖昌
Chen, Sheng-Chang
陳雅君
Chen, Ya-Chun
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 118
中文關鍵詞: 分組學習社會地位科學學習動機虛擬實驗電學
外文關鍵詞: Electricity, Group learning, Scientific learning motivation, Social status, Virtual experiments
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討社會地位介入虛擬實驗在電學實驗教學與傳統實驗教學中的應用效果,並分析社會地位策略分組融入虛擬實驗教學與傳統實驗教學對學生電學概念理解與科學學習動機的影響。
    本研究採準實驗研究設計與內容分析法,參與的樣本為一所公立國中九年級四個班級的學生,共計107人,隨機指派其中二個班級為虛擬實驗組共54人,加入社會地位及社會地位策略分組作為自變項,利用PhET及CoSci的電學虛擬實驗融入教學,以及二個班為控制組共53人。研究工具包括電學概念二階診斷測驗量表、科學學習動機量表、社會地位量表及半結構訪談問卷。資料分析方法包含:敘述統計、t檢定、單因子共變數分析、內容分析法。
    由實驗結果來看,虛擬實驗教學對於電學的概念理解提升效果有限,且對科學學習動機的提升效果也受限。然而,在不同社會地位方面的影響則較為顯著,高社會地位對於電學概念的理解有較佳表現,低社會地位在自我效能向度的科學學習動機提升表現上會較為優秀。此外,利用社會地位進行策略分組的結果顯示,有高社會地位組員的組別能夠更有效地提升科學學習動機。因此,社會地位策略分組在本研究中可視為一種有效的分組學習策略,有助於提升學生的科學學習動機。本研究的結果將有助於制定有效的科學教育策略,特別是在電學領域中提升學生的科學學習動機。


    This study explores the effects of incorporating social status interventions into virtual and traditional electrical experiment teaching, analyzing how strategies of social status grouping in both virtual and traditional experiment teaching affect students' understanding of electrical concepts and their motivation for science learning.
    The study adopts a quasi-experimental design and content analysis method, involving a sample of 107 students from four 9th-grade classes at a public junior high school. Two classes, totaling 54 students, were assigned as the virtual experiment group with social status and grouping strategies as independent variables, using PhET and CoSci’s electrical virtual experiments in teaching. The other two classes, totaling 53 students, served as the control group. Research tools included a two-tier diagnostic test for electrical concepts, a scientific learning motivation scale, a social status scale, and a semi-structured interview questionnaire. Data analysis methods included descriptive statistics, t-tests, ANCOVA, and content analysis.
    The experimental results show that virtual experiment teaching has limited effects on improving understanding of electrical concepts and enhancing scientific learning motivation. However, the impact of different social statuses was more significant; students with higher social status performed better in understanding electrical concepts, and those with lower social status showed superior improvement in scientific learning motivation, particularly in self-efficacy. Additionally, results using social status for strategic grouping indicated that groups with members of high social status could more effectively enhance scientific learning motivation. Thus, social status strategic grouping in this study can be seen as an effective group learning strategy that helps improve students' motivation in science learning.

    第一章 緒論 1 第一節 研究動機 1 第二節 研究目的與問題 5 第三節 名詞釋義 6 第四節 研究限制及範圍 8 第二章 文獻探討 9 第一節 社會地位的相關研究 9 第二節 科學學習動機理論與實徵研究 14 第三節 虛擬實驗的優勢 19 第四節 電學實徵研究 27 第三章 研究方法與設計 33 第一節 研究流程 33 第二節 研究設計 35 第三節 研究對象 43 第四節 研究教材 44 第五節 研究工具 52 第六節 資料收集與分析 60 第四章 研究結果 63 第一節 虛擬實驗對學生在電學概念理解及科學學習動機的影響 63 第二節 社會地位對學生在電學概念理解及科學學習動機的影響 72 第三節 社會地位策略分組對學生在電學概念理解及科學學習動機的影響 ………………………………………………………………….79 第五章 討論、結論與建議 84 參考文獻 93 (一) 中文文獻 93 (二) 英文文獻 97 附錄 106 附錄一、實驗活動操作詳細說明 106 附錄二、學生社會地位量表 111 附錄三、學生科學學習動機量表 112 附錄四、電學概念二階診斷測驗卷 114 附錄五、訪談問卷 118

    (一) 中文文獻
    林凡生(2018)。探討虛擬實境融入動手操作導向課程對學生「物質受熱變化」學習成就及概念理解的影響。﹝碩士論文。國立清華大學﹞臺灣博碩士論文知識加值系https://hdl.handle.net/11296/ueequx。
    林靜雯、吳育倫(2010)。應用診斷測驗結合答題信心探究跨年級學生 簡單暨串聯電路之理解及影響來源。教育科學研究期刊,五十八卷(第二期),25–56. https://doi.org/10.3966/2073753X2013065802002
    邱美虹、林靜雯(2002)。以多重類比探究兒童電流心智模式之改變。科學教育學刊,10(2),109-134。https://doi.org/10.6173/CJSE.2002.1002.01
    周應郭(2018)。引導式探究教學對高一學生物理概念學習、學生學習動機與科學探究觀點的理解程度影響之行動研究。﹝碩士論文。國立彰化師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/2y5svm。
    洪鈺欣(2017)。雲端教育科技對於學習經驗成效之研究 [doctoral dissertation, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU201704318
    張英琦、林建隆、鄭孟斐、張誌原(2017)。多面向概念改變架構融入5E探究式教學策略對概念改變成效的探討-以轉動與力矩單元為例。師資培育與教師專業發展期刊,10(3),87-117。https://doi.org/10.3966/207136492017121003004
    張春興 (1994)。現代心理學。臺北市:東華
    郭重吉(1988)。從認知觀點探討自然科學的學習。教育學院學報,13卷,351-379。
    郭重吉 (1989)。從建構主義觀點探討科學教育的理論與實際。認知與學習基礎研究第三次研討會。台北市:行政院國家科學委員會。
    許一珍(2018)。學童使用擴增實境之學習動機與學習成效研究-以八大行星學習為例。國際數位媒體設計學刊,10(1),32-38。https://doi.org/10.29465/IJDMD.201806_10(1).0004
    陳明溥、王麗君、豐佳燕(2022)。先備知識與鷹架策略對程式設計初學者運算思維概念、技能實踐與態度之影響。數位學習科技期刊,14(4),137-166。https://doi.org/10.53106/2071260X2022101404006
    陳紀錚(2017)。班級氣氛量表之探究。臺灣教育評論月刊,6(7),138-143 https://www.airitilibrary.com/Article/Detail?DocID=P20130114001-201707-201707060016-201707060016-138-143
    陳啟明、陳瓊森(1993)。發展紙筆測驗以探究高一學生對於直流電路的迷思概念。彰化師範大學學報,83-103。
    陳姿津、佘曉清 (2006) 。 [科學類比推理] 網路互動學習研究-促進國中生電學概念之建構與推理能力。http://hdl.handle.net/11536/77468.
    陳英佳(2010)。互動式電子白板虛擬實驗教學對國中生學習原子與分子之自我效能及概念理解的影響(碩士論文) 。
    http://handle.ncl.edu.tw/11296/ndltd/12311714963686477916
    楊子瑩、高千惠、林凱胤、余安順、楊秀停、王國華(2011)。用網路資源進行5E探究教學之行動研究-以七年級生物單元教學為例。科學教育月刊,(336),2-16。https://doi.org/10.6216/SEM.201103_(336).0001
    楊上緯(2013)。學生電學另有概念與其科學認識觀之探討 -以高職電機電子群學生為例。﹝碩士論文。國立彰化師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/fm38nk。
    楊文金(1998)。「同儕科學家意像」對訊息合理性判斷的影響分析。師大學報:科學教育類,43(1),1-17。https://doiorg.nthuliboc.nthu.edu.tw/10.6300/JNTNU.1998.43(1).01
    楊文金(1999)。“期望地位”對同儕互動的影響分析。科學教育學刊,7(3),217-232。https://doi.org/10.6173/CJSE.1999.0703.02
    楊文金(2000)。同儕友伴關係對六年級學生科學問題組對討論的影響分析。科學教育學刊,8(2),123-140。https://doi.org/10.6173/CJSE.2000.0802.01
    楊坤原、張賴妙理(2004)。發展和應用二段式診斷工具來偵測國中一年級學生之遺傳學另有概念。科學教育學刊,12(1),107-131。https://doi.org/10.6173/CJSE.2004.1201.05
    劉政宏、黃博聖、蘇嘉鈴、陳學志、吳有城(2010)。「國中小學習動機量表」之編製及其信、效度研究。測驗學刊,57(3),371-402。https://doi.org/10.7108/PT.201009.0371
    葉俊豪、陳瓊森(1995)。利用定性與定量測驗來探究高二學生對直流電路的知識結構。科學教育,(6),155-179。https://doi.org/10.6767/JSE.199502.0155
    鄭嘉鴻(2014)。數位學習環境與鷹架策略對國中凸透鏡成像單元學習成效與動機之影響。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/5dk9p4。
    鄭逸寧(2011)。 以虛擬實驗輔助實際操作 Flash教學小程式把理化變簡單。 IThome. https://www.ithome.com.tw/article/85253
    國立臺灣師範大學資訊教育研究所,台北市。
    蔡執仲、段曉林、靳知勤(2007)。巢狀探究教學模式對國二學生理化學習動機影響之探討。科學教育學刊,15(2),119-144。https://doi.org/10.6173/CJSE.2007.1502.01
    蔡錕承、張欣怡(2011)。結合實物與虛擬實驗促進八年級學生「溫度與熱」知識整合、實驗能力與學習策略之研究。科學教育學刊,19(5),435-459。https://doi.org/10.6173/CJSE.2011.1905.03
    廖怡雯(1999)。改進學生對電化學瞭解之研究。﹝碩士論文。國立高雄師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/5h56jw。
    鄭麗玉 (1998)。如何改變學生的迷思概念。教師之友,39(5),28-36。
    教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-自然科學領域
    教育部(2018)。十二年國民基本教育課程綱要(自然領域課程手冊)
    新竹市國民中小學常態編班及分組學習實施原則(民國106年06月)
    https://www.hc.edu.tw/edub/rule/rule.aspx

    (二) 英文文獻
    Abraham, J., Herron, J., Meir, E., Maruca, S., Stal, D., & Wallner, J. (2009, August). COS 5-9: Evolutionary Evidence: Assessing a virtual lab that explores the evidence for evolution. In The 94th ESA Annual Meeting.
    Ames, C. (1992). Classrooms: Goals, structures, and student motivation. Journal of educational psychology, 84(3), 261. https://doi.org/10.1037/0022-0663.84.3.261
    Anderson, C. W., & Smith, E. L. (1987). Teaching science. In V. Richardson-Koehler (Ed). The educator’s handbook: A research perspective. New York: Longman. https://doi.org/10.1016/0742-051X(89)90029-2
    Bales, R. F. (1950). A Set of Categories for the Analysis of Small Group Interaction. American Sociological Review, 15(2), 257–263. https://doi.org/10.2307/2086790
    Bandura, A. (1997). Self-efficacy: The exercise of control. W H Freeman/Times Books/ Henry Holt & Co. https://doi.org/10.1891/0889-8391.13.2.158
    Berger, J., Cohen, B. P., & Zelditch, M. (1972). Status Characteristics and Social Interaction. American Sociological Review, 37(3), 241–255. https://doi.org/10.2307/2093465
    Berger, J., D. G. Wagner, and M. Zelditch, Jr. (1985). "Expectation States Theory: The Status of a Research Program." To appear in Status, Rewards, and Influence, edited by J. Berger and M. Zelditch, Jr. In press. San Francisco: Jossey-Bass.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge.
    Cohen, E. G., & Lotan, R. A. (1997). Working for equity in heterogeneous classrooms: Sociological theory in practice. Teachers College Press.
    Correll, S.J., Ridgeway, C.L. (2006). Expectation States Theory. In: Delamater, J. (eds) Handbook of Social Psychology. Handbooks of Sociology and Social Research. Springer, Boston, MA . https://doi.org/10.1007/0-387-36921-X_2
    Eccles, J. S. (1983). Expectancies, values, and academic behaviors. In Achievement and achievement motives (pp. 75-146). Freeman.
    Falloon, G. (2019). Using simulations to teach young students science concepts: An Experiential Learning theoretical analysis. Computers & Education, 135, 138-159. https://doi.org/10.1016/j.compedu.2019.03.001
    Field, A. (2009). Logistic regression. Discovering statistics using SPSS, 264, 315.
    Finkelstein, N. D., Adams, W. K., Keller, C.J., Kohl, P.B., Perkins, K. K., Podolefsky, N. S., Reid,S., & Le Master, R., (2005). When learning about the real world is better done virtually:a study of substituting computer simulations for laboratory equipment. Phys. Rev. ST Phys.Education Research, 1(1), 010103. https://doi.org/10.1103/PhysRevSTPER.1.010103
    Fredette, N., & Lockhead, J.(1980). Student conceptions of simple circuits. The Physics Teacher, 18(3), 194-198.
    Garnett, P. J., & Treagust, D. F. (1992).Conceptual difficulties experienced by senior high school students of electrochemistry: electric circuits and oxidation-reduction equations. Journal of Research in Science Teaching, 29(10),1079-1099. DOI:10.1002/tea.3660291006
    Gil-Perez,D. & Carrascosa,J.(1990).What to do about science ”misconceptions”. Science Education,74(5),531-540. https://doi.org/10.1002/sce.3730740504
    Guimarães, E., Maffeis, A., Pereira, J., Russo, B., Cardozo, E., Bergerman, M., & Magalhães, M. F. (2003). REAL: A virtual laboratory for mobile robot experiments. IEEE Transactions on Education, 46 (1), 37-42. DOI: 10.1109/TE.2002.804404
    Herga, N. R., Grmek, M. I., & Dinevski, D. (2014). Virtual Laboratory as an Element of Visualization When Teaching Chemical Contents in Science Class. Turkish Online Journal of Educational Technology-TOJET, 13(4), 157-165.
    Hogan, K. (1999). Relating students’ personal frameworks for science learning to their cognition in collaborative contexts. Science education, 83, 1-32 https://doi.org/10.1002/(SICI)1098-237X(199901)83:1<1::AID-SCE1>3.0.CO;2-D
    Houle, C. O. (1961). The inquiring mind. Univer. Wisconsin Press.
    Huppert, J., Lomask, S. M., & Lazarowitz, R. (2002). Computer simulations in the high school: Students' cognitive stages, science process skills and academic achievement in microbiology. International Journal of Science Education, 24(8), 803-821. https://doi.org/10.1080/09500690110049150
    Huppert, Felicia A.(2009). A new approach to reducing disorder and improving well-being.Perspectives on Psychological Science. 2009, 4: 108-111. DOI: 10.1111/j.1745-6924.2009.01100.x
    Hwang, K. K. (1997-8).Guanxi and Mientze: Conflict Resolution in Chinese Society.
    Jaakkola, T., & Nurmi, S. (2008). Fostering elementary school students' understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24(4), 271-283. https://doi.org/10.1111/j.1365-2729.2007.00259.x
    Jariwala, M., Allen, E., & Duffy, A. (2019). Investigating simulation use on student learning outcomes in introductory physics.Physics Education Research Conference [2019 physics education research conference]. Physics Education Research (PER) Conference, Provo, UT. DOI:10.1119/perc.2019.pr.Jariwala
    Jian, Y. C., Cheung, L. Y. T., Wu, Y. J., Yang, F. Y., & Chiou, G. L. (2023). Eye movements in the manipulation of hands-on and computer-simulated scientific experiments: an examination of learning processes using entropy and lag sequential analyses. Instructional Science. https://doi.org/10.1007/s11251-023-09634-8
    Jiménez, M. P., Pedrajas, P. A., & Polo, J. (2003). Learning in chemistry with virtual laboratories.Journal of Chemical Education, 80(3), 346-352. https://doi.org/10.1021/ed080p346
    Kleinginna Jr, P. R., & Kleinginna, A. M. (1981). A categorized list of emotion definitions, with suggestions for a consensual definition. Motivation and emotion, 5(4), 345-379. https://doi.org/10.1007/BF00992553
    Kukkonen, J. E., Kärkkäinen, S., Dillon, P., & Keinonen, T. (2014). The effects of scaffolded simulation-based inquiry learning on fifth-graders' representations of the greenhouse effect. International Journal of Science Education, 36(3), 406-424. https://doi.org/10.1080/09500693.2013.782452
    Lakens D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863
    Licht, P.(1991). Teaching electrical energy, voltage and current: an alternative approach. Physics Education, 26(5), 272-277. DOI 10.1088/0031-9120/26/5/003
    Liegeois, L.,& Mullet, E.(2002). High school students’ understanding of resistance in simple series electric circuits. International Journal of Science Education, 24(6),551-564. https://doi.org/10.1080/09500690110066520
    Liu, M., Horton, L., Olmanson, J., & Toprac, P. (2011). A study of learning and motivation in a new media enriched environment for middle school science. Educational technology research and development, 59(2), 249-265. DOI:10.1007/s11423-011-9192-7
    Matthews, M.R.(1994).Science teaching: The role of history and philosophy of science. New York: Routledge.
    Osborne, R.(1983). Toward modifying children’s ideas about electric current. Research in Science & Technological Education,1(1),73-82. https://doi.org/10.1080/0263514830010108
    Palmer, D. H., & Flanagan, R. B.(1997). Readiness to change the conception that “motion-implies-force”: A comparison of 12 year-old and 16 year-old students. Science Education, 81, 317-331. https://doi.org/10.1002/(SICI)1098-237X(199706)81:3<317::AID-SCE4>3.0.CO;2-G
    Pfundt, F.,&Duit, R.(1991).Bibliography: Students’ alternative frameworks and science education.(3re ed.). Keil, West Germany:IPN.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Toward a theory of conceptual change. Science education, 66(2), 211-227. https://doi.org/10.1002/sce.3730660207
    Psillos, D. , Koumaras, P. ,& Tiberchien, A.(1988). Voltage presented as a primary concept in an introductory teaching sequence on DC circuits. International Journal of Science Education,10(1),29-43. https://doi.org/10.1080/0950069880100104
    Prima, E., Putri, A. R., & Rustaman, N. (2018). Learning Solar System Using PhET Simulation to Improve Students' Understanding and Motivation. Journal of Science Learning, 1(2), 60-70. DOI:10.17509/jsl.v1i2.10239
    Sackes, M., Trundle, K.C. & Bell, R.L. (2011). Young childrens’ computer skills development from kindergarten to third grade. Computers & Education, 5. https://doi.org/10.1016/j.compedu.2011.03.011
    Sanger, M. J., & Greenbowe, T. J. (1997). Common student misconceptions in electrochemistry: galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching, 34(4), 377-398. https://doi.org/10.1002/(SICI)1098-2736(199704)34:4<377::AID-TEA7>3.0.CO;2-O
    Shipstone, D.M.(1984). A study of children’s understanding of electricity in simple DC circuits. European Journal of Science Education,6(2),185-198. https://doi.org/10.1080/0140528840060208
    Smetana, L. K., Bell, R. L., & Jansen, A. (2017). Engagement in authentic disciplinary practices promotes students' understanding of scientific ideas and inquiry abilities. Journal of Research in Science Teaching, 54(3), 424-449. DOI:10.1007/978-94-007-3980-2_3
    Steinberg, M.S.(1983). Reinventing electricity. Misconceptions and educational strategies in science and mathematics(pp792-819). Proceeding of the international seminar(1st, Ithaca). N.Y.
    Ton de Jong, T., Linn, M. C., & Zacharia , Z. C. (2013). Physical and virtual laboratories in scienceand engineering. Education. Science, 340(6130), 305-308 DOI:10.1126/science.1230579
    Tselegkaridis, S., Sapounidis, T., & Stamovlasis, D. (2023). Teaching electric circuits using tangible and graphical user interfaces: A meta-analysis. Education and Information Technologies. https://doi.org/10.1007/s10639-023-12164
    Tseng, Y. K., Lin, F. S., Tarng, W., Lu, Y. L., & Wang, T. L. (2023). COMPARING THE EFFECTS OF PHYSICAL, VIRTUAL, AND HYBRID LABS ON PRIMARY SCHOOL STUDENTS' CONCEPTUAL LEARNING OF HEAT AND TEMPERATURE. Journal of Baltic Science Education, 22(1), 153-166. https://doi.org/10.33225/jbse/23.22.153
    Tuan, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students' motivation towards science learning. International Journal of Science Education, 27(6), 639-654. https://doi.org/10.1080/0950069042000323737
    Viard, J., & Francoise, K. - L. (2001). The concept of electrical resistance: how Cassirer’s philosophy, and the early developments of electric circuit theory, allow a better understanding of students’ learning difficulties. Science and Education,10, 267-286. https://doi.org/10.1023/A:1008712903985
    Walsh, Y., & Magana, A. J. (2023). Learning Statics through Physical Manipulative Tools and Visuohaptic Simulations: The Effect of Visual and Haptic Feedback. Electronics, 12(7), Article 1659. https://doi.org/10.3390/electronics12071659
    Wang, T. L., & Tseng, Y. K. (2018). The Comparative Effectiveness of Physical, Virtual, and Virtual-Physical Manipulatives on Third-Grade Students' Science Achievement and Conceptual Understanding of Evaporation and Condensation. International Journal of Science and Mathematics Education, 16(2), 203-219. https://doi.org/10.1007/s10763-016-9774-2
    Wandersee, J. H., Mintzes, J. J., & Novak, J. D.(1994). Research on alternative conceptions in science. New York: Simon & Schuster and Prentice Hall International.
    Yager, R.E.(1991).The constructivist learning model: Towards real reform in science education. The Science Teacher,58(6),52-57.
    Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students' conceptual understanding in heat and temperature.Journal of Research in Science Teaching, 45(9), 1021-103. https://doi.org/10.1002/tea.20260
    Zacharia, Z. C., & Ton de Jong, T. (2014). The effects on students' conceptual understanding of electric circuits of introducing virtual manipulatives within a physical manipulatives- oriented curriculum. Cognition and Instruction, 32(2), 101-158. ttps://doi.org/10.1080/07370008.2014.887083

    QR CODE