簡易檢索 / 詳目顯示

研究生: 謝惠芳
Hsieh, Hui-Fang
論文名稱: 雷射剝蝕感應耦合電漿質譜儀分析環境及生物樣品中的微量元素
Trace element determinations of environmental and biological samples by laser ablation inductively coupled plasma mass spectrometry
指導教授: 王竹方
Wang, Chu-Fang
口試委員: 張怡怡
蔣本基
魏玉麟
孫毓璋
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 75
中文關鍵詞: 雷射剝蝕感感應耦合電漿質譜儀血液多元素直接分析稀土元素
外文關鍵詞: Laser ablation, Inductively coupled plasma mass spectrometry, Whole blood, Lead, Multiple elements, Direct analysis, Rare earth element
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Laser ablation (LA) systems, connected to inductively coupled plasma mass spectrometry (ICP-MS), can be used to ablate solid samples directly for trace and ultra-trace element determination. In this dissertation, we demonstrated the application and development of LA-ICP-MS technique for analysis of multiple elements in whole blood and rare earth elements in water samples. Exquisite ability of LA-ICP-MS technique has been exploited to show its potential in broad range of research area.
    Firstly, we developed the method for accurate determination of Pb concentrations in blood samples using LA-ICP-MS, with the proposed micro-droplet aqueous standard calibration method. In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards for calibration purposes. Here we describe aqueous standard calibration and matrix-matched calibration methods. This method was validated by analysis of the reference materials. The lower detection limit was estimated as 0.1 ng mL−1. Subsequently, we describes the method follows the previously statement, and improved the method by applying more elements. The proposed method—using LA-ICP-MS, with calibration using a micro-droplet of an aqueous standards solution—can be applied to accurately determine the concentrations of multi-elements in whole blood samples. With this technique, we simultaneously quantified 13 elements in whole blood: Be, Mn, Co, Ni, Tl, Bi, Sb, Pb, Cu, Zn, Ba, Mg, and Cd. A major advantage of this technique is the small amount of sample required—only 0.5 μL, which is readily obtained from a finger or heel stick. This analytical method requires no sample pretreatment and may be particularly suitable for the rapid screening of large numbers of blood samples.
    Then, we describe a simple method for simultaneous preconcentration and matrix reduction during the analysis of rare earth elements (REEs) in water samples through LA-ICP-MS. From a systematic investigation of the co-precipitation of REEs using magnesium hydroxide, we optimized the effects of several parameters—the pH, the amount of magnesium, the shaking time, the efficiency of Ba removal, and the sample matrix—to ensure quantitative recoveries. We employed repetitive laser ablation to remove the dried-droplet samples from the filter medium and introduce them into the ICP-MS system for determinations of REEs. The enrichment factors ranged from 8 to 88. The detection limit, at an enrichment factor of 32, ranged from 0.03 to 0.20 pg mL–1. We applied this method to satisfactory determination of REEs in lake water and synthetic seawater samples. Our proposed method for analyzing REEs in real samples is simple and straightforward. The procedure provides excellent preconcentration efficiency, as well as high concentration factors, for analytes in water samples, ensuring the highly sensitive detection of REE analytes.


    Table of contents Content Page Publications relevant to the scope of this thesis ……………………………………….. i Abstract………………...……………………………..………........………………….. ii Table of contents …………………………………..………………………………...... v List of figures …..…………………………………….…………...………………… viii List of tables ………..…………………………………..…………….……………….. x Chapter 1. Introduction 1.1. Motivation…………………………………………………………………..……. 1 1.2. Scope of this research…………………………………………………….………. 2 Chapter 2. Literature review 2.1. Environmental and biological monitoring for essential and toxic elements……...... 3 2.2. Inductively coupled plasma mass spectrometry (ICP-MS)……………...………… 5 2.3. Laser ablation coupled with inductively coupled plasma mass spectrometry (LA-ICP-MS) …….. 7 2.4. Lead determination in whole blood……………………………………………… 10 2.5. Multiple elements determination in whole blood…………………………...…… 12 2.6. Rare earth elements determination in water samples……….……….……...…… 14 Chapter 3. Experimental 3.1. Lead determination in whole blood ………………………………………...…… 18 3.2. Multiple elements determination in whole blood…………………………...…… 21 3.3. Rare earth elements determination in water samples……….…………….....…… 24 Chapter 4. Results and discussion 4.1. Lead determination in whole blood by laser ablation coupled with inductively coupled plasma mass spectrometry …………………………………...………........... 29 4.1.1 Feasibility of LA-ICP-MS.……………………..……………………………..... 29 4.1.2 Calibration curves by LA-ICP-MS.……..................……………………….....… 31 4.1.3 Real sample analysis validation………………………………………………… 35 4.1.4 Comparison with conventional method.…………………..…………...………... 36 4.1.5. Conclusions …………………………………………………….……………... 41 4.2. Using dried-droplet laser ablation inductively coupled plasma mass spectrometry to quantify multiple elements in whole blood ………………………………………....... 42 4.2.1 Feasibility of LA-ICP-MS………………………………………..…………….. 42 4.2.2 Analytical performance………………………………………………………… 43 4.2.3 Matrix-matched calibration for Cd………………………………..……………. 44 4.2.4 Comparison with other techniques……….……………………………………. 45 4.2.5. Conclusions ……………………………………………………….…………... 46 4.3. A magnesium hydroxide preconcentration/matrix reduction method for the analysis of rare earth elements in water samples using laser ablation inductively coupled plasma mass spectrometry………………………………………………………………......... 52 4.3.1 Feasibility of LA-ICP-MS…………………....………………………..……….. 52 4.3.2 Optimization of co-precipitation parameters……………………........……..…... 54 4.3.2.1 Effect of pH……………………............…………………….....…...………… 54 4.3.2.2 Effect of the amount of Mg as the carrier element……………………………. 55 4.3.2.3 Effect of shaking time…………………….……..………………..…............... 55 4.3.2.4 Repeated co-precipitation………...……………………………………..……. 56 4.3.2.5 Effect of Ba2+ interference………………...………………..…....................... 56 4.3.3 Effect of lake water and synthetic seawater matrices on the determination of REEs……………..…………………...……………………………………................. 59 4.3.4 Analytical figures of merit……………………………………….……………... 60 4.3.5 Analytical application…………………………………..…………..…………... 61 4.3.6 Comparison with other techniques…………………….………………............... 61 4.3.7. Conclusions ……………………………………………………….…………... 62 Chapter 5. Conclusions and future directions 5.1 Conclusions…………………………………………..…….……………………. 68 5.2 Future works ………… ………………………………..…….………….............. 69 References …………………..…….………………………………………..…….….. 71 Appendices List of figures Fig. 2.1. Scheme of environmental and biological monitoring Fig. 2.2. Modified periodic table showing selected elements that are of clinical and/or public health significance. Essential elements are subdivided into major and trace (0.01–100 μg g–1 or 10 μg L–1–104 μg L–1) based on the NCCLS classification Fig. 2.3. Schematic representation of processes in ICP-MS from sample introduction to mass analysis Fig. 2.4. Schematic of a laser ablation system Fig. 2.5. Flow chart for calibration strategies using laser ablation sampling Fig. 3.1. Flow chart of experimental design Fig. 3.2. Workflow of the quantification with blood samples Fig. 3.3. Workflow of co-precipitation procedures with water samples Fig. 4.1. Mass spectra of (a) gas blank, (b) PTFE filter membrane and (c) blood droplet samples. The droplet volume was 0.5 μL and the concentration of Pb was 252 ng mL−1 Fig. 4.2. Images of dried blood droplet on the PTFE filter membrane. (a) Before ablation and (b) after ablation Fig. 4.3. Total ion chromatogram of 208Pb obtained by LA-ICP-MS. The volume of the droplet was 0.5 μL and the concentration of Pb was 503 ng mL−1 Fig. 4.4. Calibration curves of 208Pb built fromSeronorm matrix-matched and aqueous standard solution. The error bars indicate ± 3 standard deviations Fig. 4.5. Responses from (a) 63Cu+ and (b) 121Sb+ obtained using LA-ICP-MS. The volume of the droplet was 0.5 μL; the concentrations of Cu and Sb were 1740 and 82.7 ng mL–1, respectively Fig. 4.6. Still video images of the LA of dried droplets (1 μL) on the PTFE filter membrane. (a) 5 ng mL–1 standard solution and (b) lake water with 5 ng mL–1 REEs. (a, b) Before and (a´, b´) after ablation Fig. 4.7. Responses from (a) 139La+ and (b) 153Eu+ obtained using LA-ICP-MS. Droplet volume: 1 μL; concentrations of La and Eu: 10 ng mL–1 each Fig. 4.8. Effect of pH on the co-precipitation efficiencies of REEs ions (N = 3). Shaking time: 5 min; Mg content: 8 mM; concentrations of REEs: 5 ng mL–1 Fig. 4.9. Effect of Mg content on the co-precipitation efficiencies of REE ions (N = 3). Shaking time: 5 min; pH: 10.5; concentrations of REEs: 5 ng mL–1 Fig. 4.10. Efficiencies of multiple replicates of the Mg co-precipitation process. Shaking time: 5 min; Mg content: 8 mM; pH: 10.5; concentrations of REEs: 1 ng mL−1 Fig. 4.11. Analyses of REEs ions at various concentrations of Ba. Shaking time: 5 min; Mg content: 8 mM; pH: 10.5; concentrations of REEs: 1 ng mL–1 Fig. 4.12. Slopes of the calibrations for the REEs ions in the (a) lake water and (b) synthetic seawater, plotted with respect to those in the standard samples List of tables Table 2.1 Comparison of ICP-MS versus LA-ICP-MS for trace (bulk) analysis of high purity solid samples Table 3.1 LA-ICP-MS operating conditions Table 3.2 LA-ICP-MS operating conditions Table 4.1 Comparison of the measured and target concentrations from three blood samples Table 4.2 Figures of merit Table 4.3 Comparison of characteristics between conventional ICP-MS and LA-ICP-MS Table 4.4 Comparison of different analytical techniques for determination of blood lead Table 4.5 Analytical results for the determination of multiple elements in blood reference material Table 4.6 Linearity and limits of detection (LODs) and quantification (LOQs) of the proposed method Table 4.7 Accuracy data for the determination of two blood reference materials using the matrix-matched calibration curve Table 4.8 Comparison of characteristics of various methods for the detection of multiple elements in whole blood Table 4.9 Analytical figures of merit Table 4.10 Analytical results of REEs in SLRS4 Table 4.11 Analytical results of REEs in water samples Table 4.12 Comparison of the REEs analytical performance for different water analysis techniques

    [1] S. F. Durrant, N. I. Ward, J. Anal. At. Spectrom. 20 (2005) 821–829.
    [2] R. E. Russo, X. L. Mao, H. C. Liu, J. Gonzalez, S. S. Mao, Talanta 57 (2002) 425–451.
    [3] N. S. Mokgalaka, J. L. Gardea-Torresdey, Appl. Spectrosc. Rev. 41 (2006) 131–150.
    [4] F. Boué-Bigne, B. J. Masters, J. S. Crighton, B. L. Sharp, J. Anal. At. Spectrom. 14 (1999) 1665–1672.
    [5] J.S. Becker, Spectrochim. Acta Part B 57 (2002) 1805–1820.
    [6] J. Angerer, U. Ewers, M. Wilhelm, Int. J. Hyg. Environ. Health 210 (2007) 201–228.
    [7] P.J. Parsons, F. Barbosa, Spectrochim. Acta Part B 62 (2007) 992–1003.
    [8] NCCLS, Control of pre-analytical variation in trace element determinations; approved guideline, National Committee for Clinical Laboratory Standards (NCCLS) Document, 1997.
    [9] http://www.agilenticpms.com/primer/ICP-MS%20Primer.pdf
    [10] J.S. Becker, Inorganic mass spectrometry: principles and applications, Wiely, 2007.
    [11] Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Lead, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 2007.
    [12] T.I. Lidsky, J.S. Schneider, Brain 126 (2003) 5–19.
    [13] T.P. Moyer, D.N. Nixon, K.O. Ash, Clin. Chem. 45 (1999) 2055–2056.
    [14] Centers for Disease Control and Prevention (CDC), Preventing Lead Poisoning in Young Children, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 1991.
    [15] A. Viitak, A.B. Volynsky, Talanta 70 (2006) 890–895.
    [16] E.J. Daftsis, G.A. Zachariadis, Talanta 71 (2007) 722–730.
    [17] F. Kummrow, F.F. Silva, R. Kuno, A.L. Souza, P.V. Oliveira, Talanta 75 (2008) 246–252.
    [18] Z.W. Zhang, S. Shimbo, N. Ochi, M. Eguchi, T.Watanabe, C.S. Moon, M. Ikeda, Sci Total Environ. 205 (1997) 179–187.
    [19] C.D. Palmer, M.E. Lewis, C.M. Geraghty, F. Barbosa, P.J. Parsons, Spectrochim. Acta Part B 61 (2006) 980–990.
    [20] Y. Zhou, R.A. Zanão, F. Barbosa, P.J. Parsons, F.J. Krug, Spectrochim. Acta Part B 57 (2002) 1291–1300.
    [21] J.H.Wang, Y.L. Yu, Z. Du, Z.L. Fang, J. Anal. At. Spectrom. 19 (2004) 1559–1563.
    [22] Z.Wan, Z.R. Xu, J.H.Wang, Analyst 131 (2006) 141–147.
    [23] S. Jaenicke, R.M. Sabarathinam, B. Fleet, H. Gunasingham, Talanta 45 (1998) 703–711.
    [24] B.J. Feldman, J.D. Osterloh, B.H. Hata, A. D’Alessandro, Anal. Chem. 66 (1994) 1983–1987.
    [25] D. Jagner, L. Renman, Y.D.Wang, Electroanalysis 6 (1994) 285–291.
    [26] H.T. Delves, M.J. Campbell, J. Anal. At. Spectrom. 3 (1988) 343–348.
    [27] E. Barany, I.A. Bergdahl, A. Schütz, S. Skerfving, A. Oskarsson, J. Anal. At. Spectrom. 12 (1997) 1005–1009.
    [28] D.E. Nixon, K.R. Neubauer, S.J. Eckdahl, J.A. Butz, M.F. Burritt, Spectrochim. Acta Part B 59 (2004) 1377–1387.
    [29] W.J. McShane, R.S. Pappas, V. Wilson-McElprang, D. Paschal, Spectrochim. Acta Part B 63 (2008) 638–644.
    [30] I. Rodushkin, F. Ödman, S. Branth, Fresenius’ J. Anal. Chem. 364 (1999) 338–346.
    [31] P. Heitland, H.D. Köster, J. Trace Elem. Med. Biol. 20 (2006) 253–262.
    [32] K. Verebey, Y.M. Eng, B. Davidow, A. Ramon, J. Anal. Toxicol. 15 (1991) 237–240.
    [33] S.T.Wang, H.P. Demshar, Analyst 117 (1992) 959–961.
    [34] H.Y. Yee, T.G. Holtrop, J. Anal. Toxicol. 21 (1997) 142–148.
    [35] M.T. Di Martino, A. Michniewicz, M. Martucci, G. Parlato, Clin. Chim. Acta 350 (2004) 143–150.
    [36] M. Resano, L. Rello, E. García-Ruiz, M.A. Belarra, J. Anal. At. Spectrom. 22 (2007) 1250–1259.
    [37] D.F. El-Hajjar, K.H. Swanson, J.D. Landmark, D.F. Stickle, Clin. Chim. Acta 377 (2007) 179–184.
    [38] J.V. Cizdziel, Anal. Bioanal. Chem. 388 (2007) 603–611.
    [39] J.P. Goullé, L. Mahieu, J. Castermant, N. Neveu, L. Bonneau, G. Lainé, D. Bouige, C. Lacroix, Forensic Sci. Int. 153 (2005) 3944.
    [40] J.L.M. de Boer, R. Ritsema, S. Piso, H. van Staden, W. van den Beld, Anal. Bioanal. Chem. 379 (2004) 872–880.
    [41] I. Rodushkin, F. Ödman, R. Olofsson, M.D. Axelsson, J. Anal. At. Spectrom. 15 (2000) 937–944.
    [42] A. Bazzi, J.O. Nriagu, A.M. Linder, J. Environ. Monit. 10 (2008) 1226–1232.
    [43] S. D’Ilio, N. Violante, M. Di Gregorio, O. Senofonte, F. Petrucci, Anal. Chim. Acta 579 (2006) 202–208.
    [44] B.L. Batista, J.L. Rodrigues, J.A. Nunes, V.C. de O. Souza, F. Barbosa, Anal. Chim. Acta 639 (2009) 13–18.
    [45] R. Wahlen, L. Evans, J. Turner, R. Hearn, Spectroscopy 20 (2005) 84–89.
    [46] S. D’Ilio, N. Violante, S. Caimi, M. Di Gregorio, F. Petrucci, O. Senofonte, Anal. Chim. Acta 573 (2006) 432–438.
    [47] S.N. Chaudhuri, S.J.M. Butala, R.W. Ball, C.T. Braniff, J. Expo. Sci. Environ. Epidemiol. 19 (2009) 298–316.
    [48] L. Yang, R.E. Sturgeon, Z. Mester, Anal. Chem. 77 (2005) 2971–2977.
    [49] T. Pasinli, A.E. Eroğlu, T. Shahwan, Anal. Chim. Acta 547 (2005) 42–49.
    [50] K.J.M. Kramer, W.S. Dorten, H. Van het Groenewoud, E. de Haan, G.N. Kramer, L. Monteiro, H. Muntau, P. Quevauviller, J. Environ. Monit. 1 (1999) 83–89.
    [51] P. Möller, P. Dulski, M. Bau, A. Knappe, A. Pekdeger, C. Sommer-von Jarmersted, J. Geochem. Explor. 69 (2000) 409–414.
    [52] G. Strauch, M. Möder, R. Wennrich, K. Osenbrück, H.R. Gläser, T. Schladitz, C. Müller, K. Schirmer, F. Reinstorf, M. Schirmer, J. Soil Sed. 8 (2008) 23–33.
    [53] J.M. Lo, K.S. Lin, J.C. Wei, J.D. Lee, J. Radioanal. Nucl. Chem. 216 (1997) 121–124.
    [54] C.P. Lin, B.T. Hsieh, G. Ting, S.J. Yeh, J. Radioanal. Nucl. Chem. 236 (1998) 165–168.
    [55] T.J. Shaw, T. Duncan, B. Schnetger, Anal. Chem. 75 (2003) 3396–3403.
    [56] P. Liang, Y. Liu, L. Guo, Spectrochim. Acta Part B 60 (2005) 125–129.
    [57] R.K. Katarina, M. Oshima, S. Motomizu, Talanta, 79 (2009) 1252–1259.
    [58] R.K. Katarina, M. Oshima, S. Motomizu, Talanta 78 (2009) 1043–1050.
    [59] C.Z. Huang, Z.C. Jiang, B. Hu, Talanta 73 (2007) 274–281.
    [60] V. Umashankar, R. Radhamani, K. Ramadoss, D.S.R. Murty, Talanta 57 (2002) 1029–1038.
    [61] J. Yin, B. Hu, M. He, Z.C. Jiang, Anal. Chim. Acta 594 (2007) 61–68.
    [62] S.W. Wu, M. He, B. Hu, Z.C. Jiang, Microchim. Acta 159 (2007) 269–275.
    [63] D. Rahmi, Y. Takasaki, Y.B. Zhu, H. Kobayashi, S. Konagaya, H. Haraguchi, T. Umemura, Talanta 81 (2010) 1438–1445.
    [64] D. Rahmi, Y. Zhu, E. Fujimori, T. Umemura, H. Haraguchi, Talanta 72 (2007) 600–606.
    [65] C.H. González, A.J.Q. Cabezas, M.F. Díaz, Talanta 68 (2005) 47–53.
    [66] K. Hennebrüder, R. Wennrich, J. Mattusch, H.J. Stark, W. Engewald, Talanta 63 (2004) 309–316.
    [67] Y.B. Zhu, A. Itoh, T. Umemura, H. Haraguchi, K. Inagaki, K. Chiba, J. Anal. At. Spectrom. 25 (2010) 1253–1258.
    [68] Y.B. Zhu, T. Umemura, H. Haraguchi, K. Inagaki, K. Chiba, Talanta 78 (2009) 891–895.
    [69] Q. Fu, L.M. Yang, Q.Q. Wang, Talanta 72 (2007) 1248–1254.
    [70] Y.B. Zhu, K. Inagaki, H. Haraguchi, K. Chiba, J. Anal. At. Spectrom. 25 (2010) 364–369.
    [71] M.G. Lawrence, A. Greig, K.D. Collerson, B.S. Kamber, Appl. Geochem. 21 (2006) 839–848.
    [72] C.L. Chou, J.D. Moffatt, Fresenius’ J. Anal. Chem. 368 (2000) 59–61.
    [73] K. Srogi, Anal. Lett. 41 (2008) 677–724.
    [74] M.D. Pereira, M.A.Z. Arruda, Microchim. Acta 141 (2003) 115–131.
    [75] M. L. Chen, T. Yang, T., J. H. Wang, Anal. Chim. Acta 631 (2009) 74–79.
    [76] C.H. Chung, I. Brenner, C.F. You, Spectrochim. Acta Part B 64 (2009) 849–856.
    [77] P. Grinberg, L. Yang, Z. Mester, S. Willie, R.E. Sturgeon, J. Anal. At. Spectrom. 21 (2006) 1202–1208.
    [78] H.F. Hsieh, W.S. Chang, Y.K. Hsieh, C.F. Wang, Talanta 79 (2009) 183–188.
    [79] D.R. Lide, CRC Handbook of Chemistry and Physics, 88th ed., CRC Press, 2008.
    [80] T. Linsinger, Comparison of measurement result with the certified value, in: European Reference Materials: Application Note 1, Joint Research Centre Institute for Reference Materials and Measurements (IRMM), Geel, Belgium, 2005.
    [81] L. Cuadros-Rodríguez, A. M. García-Campaña, E. Almansa-López, F. J. Egea-González, M. L. C. Cano, A. G. Frenich, J. L. Martínez-Vidal, Anal. Chim. Acta 478 (2003) 281–301.
    [82] V.L. Snoeyink, D. Jenkins, Water Chemistry, Wiley, New York, 1980.
    [83] M.J. Greaves, H. Elderfield, G.P. Klinkhammer, Anal. Chim. Acta 218 (1989) 265–280.
    [84] P. Möller, P. Dulski, J. Luck, Spectrochim. Acta Part B 47 (1992) 1379–1387.
    [85] D. Yeghicheyan, J. Carignan, M. Valladon, M.B. Le Coz, F. Le Cornec, M. Castrec-Rouelle, M. Robert, L. Aquilina, E. Aubry, C. Churlaud, A. Dia, S. Deberdt, B. Dupré, R. Freydier, G. Gruau, O. Hénin, A.M. de Kersabiec, J. Macé, L. Marin, N. Morin, P. Petitjean, E. Serrat, Geostandard Newsletter. 25 (2001) 465–474.
    [86] M. Tuzen, K. O. Saygi, M. Soylak, Talanta 71 (2007) 424–429.
    [87] S. Saracoglu, M. Soylak, L. Elci, Trace Elem. Electrolytes 18 (2001) 129–133.
    [88] T. Yabutani, Y. Utsunomiya, Y. Kado, Y. Tani, H. Kishimoto, A. Fukuda, J. Motonaka, Anal. Sci. 22 (2006) 1021–1024.
    [89] J. Bettmer, N. Jakubowski, A. Prange, Anal. Bioanal. Chem. 386 (2006) 7–11.
    [90] A. Sanz-Medel, M. Montes-Bayón, M. de la Campa, J. R. Encinar, J. Bettmer, Anal. Bioanal. Chem. 390 (2008) 3–16.
    [91] S. H. Hu, S.H. Zhang, Z. C. Hu, Z. Xing, X. R. Zhang, Anal. Chem. 79 (2007) 923–929.
    [92] M. Tuzen, D. Citak, D. Mendil, M. Soylak, Talanta 78 (2009) 52–56.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE