研究生: |
謝惠芳 Hsieh, Hui-Fang |
---|---|
論文名稱: |
雷射剝蝕感應耦合電漿質譜儀分析環境及生物樣品中的微量元素 Trace element determinations of environmental and biological samples by laser ablation inductively coupled plasma mass spectrometry |
指導教授: |
王竹方
Wang, Chu-Fang |
口試委員: |
張怡怡
蔣本基 魏玉麟 孫毓璋 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 雷射剝蝕感 、感應耦合電漿質譜儀 、血液 、鉛 、多元素 、直接分析 、稀土元素 |
外文關鍵詞: | Laser ablation, Inductively coupled plasma mass spectrometry, Whole blood, Lead, Multiple elements, Direct analysis, Rare earth element |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Laser ablation (LA) systems, connected to inductively coupled plasma mass spectrometry (ICP-MS), can be used to ablate solid samples directly for trace and ultra-trace element determination. In this dissertation, we demonstrated the application and development of LA-ICP-MS technique for analysis of multiple elements in whole blood and rare earth elements in water samples. Exquisite ability of LA-ICP-MS technique has been exploited to show its potential in broad range of research area.
Firstly, we developed the method for accurate determination of Pb concentrations in blood samples using LA-ICP-MS, with the proposed micro-droplet aqueous standard calibration method. In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards for calibration purposes. Here we describe aqueous standard calibration and matrix-matched calibration methods. This method was validated by analysis of the reference materials. The lower detection limit was estimated as 0.1 ng mL−1. Subsequently, we describes the method follows the previously statement, and improved the method by applying more elements. The proposed method—using LA-ICP-MS, with calibration using a micro-droplet of an aqueous standards solution—can be applied to accurately determine the concentrations of multi-elements in whole blood samples. With this technique, we simultaneously quantified 13 elements in whole blood: Be, Mn, Co, Ni, Tl, Bi, Sb, Pb, Cu, Zn, Ba, Mg, and Cd. A major advantage of this technique is the small amount of sample required—only 0.5 μL, which is readily obtained from a finger or heel stick. This analytical method requires no sample pretreatment and may be particularly suitable for the rapid screening of large numbers of blood samples.
Then, we describe a simple method for simultaneous preconcentration and matrix reduction during the analysis of rare earth elements (REEs) in water samples through LA-ICP-MS. From a systematic investigation of the co-precipitation of REEs using magnesium hydroxide, we optimized the effects of several parameters—the pH, the amount of magnesium, the shaking time, the efficiency of Ba removal, and the sample matrix—to ensure quantitative recoveries. We employed repetitive laser ablation to remove the dried-droplet samples from the filter medium and introduce them into the ICP-MS system for determinations of REEs. The enrichment factors ranged from 8 to 88. The detection limit, at an enrichment factor of 32, ranged from 0.03 to 0.20 pg mL–1. We applied this method to satisfactory determination of REEs in lake water and synthetic seawater samples. Our proposed method for analyzing REEs in real samples is simple and straightforward. The procedure provides excellent preconcentration efficiency, as well as high concentration factors, for analytes in water samples, ensuring the highly sensitive detection of REE analytes.
[1] S. F. Durrant, N. I. Ward, J. Anal. At. Spectrom. 20 (2005) 821–829.
[2] R. E. Russo, X. L. Mao, H. C. Liu, J. Gonzalez, S. S. Mao, Talanta 57 (2002) 425–451.
[3] N. S. Mokgalaka, J. L. Gardea-Torresdey, Appl. Spectrosc. Rev. 41 (2006) 131–150.
[4] F. Boué-Bigne, B. J. Masters, J. S. Crighton, B. L. Sharp, J. Anal. At. Spectrom. 14 (1999) 1665–1672.
[5] J.S. Becker, Spectrochim. Acta Part B 57 (2002) 1805–1820.
[6] J. Angerer, U. Ewers, M. Wilhelm, Int. J. Hyg. Environ. Health 210 (2007) 201–228.
[7] P.J. Parsons, F. Barbosa, Spectrochim. Acta Part B 62 (2007) 992–1003.
[8] NCCLS, Control of pre-analytical variation in trace element determinations; approved guideline, National Committee for Clinical Laboratory Standards (NCCLS) Document, 1997.
[9] http://www.agilenticpms.com/primer/ICP-MS%20Primer.pdf
[10] J.S. Becker, Inorganic mass spectrometry: principles and applications, Wiely, 2007.
[11] Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Lead, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 2007.
[12] T.I. Lidsky, J.S. Schneider, Brain 126 (2003) 5–19.
[13] T.P. Moyer, D.N. Nixon, K.O. Ash, Clin. Chem. 45 (1999) 2055–2056.
[14] Centers for Disease Control and Prevention (CDC), Preventing Lead Poisoning in Young Children, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 1991.
[15] A. Viitak, A.B. Volynsky, Talanta 70 (2006) 890–895.
[16] E.J. Daftsis, G.A. Zachariadis, Talanta 71 (2007) 722–730.
[17] F. Kummrow, F.F. Silva, R. Kuno, A.L. Souza, P.V. Oliveira, Talanta 75 (2008) 246–252.
[18] Z.W. Zhang, S. Shimbo, N. Ochi, M. Eguchi, T.Watanabe, C.S. Moon, M. Ikeda, Sci Total Environ. 205 (1997) 179–187.
[19] C.D. Palmer, M.E. Lewis, C.M. Geraghty, F. Barbosa, P.J. Parsons, Spectrochim. Acta Part B 61 (2006) 980–990.
[20] Y. Zhou, R.A. Zanão, F. Barbosa, P.J. Parsons, F.J. Krug, Spectrochim. Acta Part B 57 (2002) 1291–1300.
[21] J.H.Wang, Y.L. Yu, Z. Du, Z.L. Fang, J. Anal. At. Spectrom. 19 (2004) 1559–1563.
[22] Z.Wan, Z.R. Xu, J.H.Wang, Analyst 131 (2006) 141–147.
[23] S. Jaenicke, R.M. Sabarathinam, B. Fleet, H. Gunasingham, Talanta 45 (1998) 703–711.
[24] B.J. Feldman, J.D. Osterloh, B.H. Hata, A. D’Alessandro, Anal. Chem. 66 (1994) 1983–1987.
[25] D. Jagner, L. Renman, Y.D.Wang, Electroanalysis 6 (1994) 285–291.
[26] H.T. Delves, M.J. Campbell, J. Anal. At. Spectrom. 3 (1988) 343–348.
[27] E. Barany, I.A. Bergdahl, A. Schütz, S. Skerfving, A. Oskarsson, J. Anal. At. Spectrom. 12 (1997) 1005–1009.
[28] D.E. Nixon, K.R. Neubauer, S.J. Eckdahl, J.A. Butz, M.F. Burritt, Spectrochim. Acta Part B 59 (2004) 1377–1387.
[29] W.J. McShane, R.S. Pappas, V. Wilson-McElprang, D. Paschal, Spectrochim. Acta Part B 63 (2008) 638–644.
[30] I. Rodushkin, F. Ödman, S. Branth, Fresenius’ J. Anal. Chem. 364 (1999) 338–346.
[31] P. Heitland, H.D. Köster, J. Trace Elem. Med. Biol. 20 (2006) 253–262.
[32] K. Verebey, Y.M. Eng, B. Davidow, A. Ramon, J. Anal. Toxicol. 15 (1991) 237–240.
[33] S.T.Wang, H.P. Demshar, Analyst 117 (1992) 959–961.
[34] H.Y. Yee, T.G. Holtrop, J. Anal. Toxicol. 21 (1997) 142–148.
[35] M.T. Di Martino, A. Michniewicz, M. Martucci, G. Parlato, Clin. Chim. Acta 350 (2004) 143–150.
[36] M. Resano, L. Rello, E. García-Ruiz, M.A. Belarra, J. Anal. At. Spectrom. 22 (2007) 1250–1259.
[37] D.F. El-Hajjar, K.H. Swanson, J.D. Landmark, D.F. Stickle, Clin. Chim. Acta 377 (2007) 179–184.
[38] J.V. Cizdziel, Anal. Bioanal. Chem. 388 (2007) 603–611.
[39] J.P. Goullé, L. Mahieu, J. Castermant, N. Neveu, L. Bonneau, G. Lainé, D. Bouige, C. Lacroix, Forensic Sci. Int. 153 (2005) 3944.
[40] J.L.M. de Boer, R. Ritsema, S. Piso, H. van Staden, W. van den Beld, Anal. Bioanal. Chem. 379 (2004) 872–880.
[41] I. Rodushkin, F. Ödman, R. Olofsson, M.D. Axelsson, J. Anal. At. Spectrom. 15 (2000) 937–944.
[42] A. Bazzi, J.O. Nriagu, A.M. Linder, J. Environ. Monit. 10 (2008) 1226–1232.
[43] S. D’Ilio, N. Violante, M. Di Gregorio, O. Senofonte, F. Petrucci, Anal. Chim. Acta 579 (2006) 202–208.
[44] B.L. Batista, J.L. Rodrigues, J.A. Nunes, V.C. de O. Souza, F. Barbosa, Anal. Chim. Acta 639 (2009) 13–18.
[45] R. Wahlen, L. Evans, J. Turner, R. Hearn, Spectroscopy 20 (2005) 84–89.
[46] S. D’Ilio, N. Violante, S. Caimi, M. Di Gregorio, F. Petrucci, O. Senofonte, Anal. Chim. Acta 573 (2006) 432–438.
[47] S.N. Chaudhuri, S.J.M. Butala, R.W. Ball, C.T. Braniff, J. Expo. Sci. Environ. Epidemiol. 19 (2009) 298–316.
[48] L. Yang, R.E. Sturgeon, Z. Mester, Anal. Chem. 77 (2005) 2971–2977.
[49] T. Pasinli, A.E. Eroğlu, T. Shahwan, Anal. Chim. Acta 547 (2005) 42–49.
[50] K.J.M. Kramer, W.S. Dorten, H. Van het Groenewoud, E. de Haan, G.N. Kramer, L. Monteiro, H. Muntau, P. Quevauviller, J. Environ. Monit. 1 (1999) 83–89.
[51] P. Möller, P. Dulski, M. Bau, A. Knappe, A. Pekdeger, C. Sommer-von Jarmersted, J. Geochem. Explor. 69 (2000) 409–414.
[52] G. Strauch, M. Möder, R. Wennrich, K. Osenbrück, H.R. Gläser, T. Schladitz, C. Müller, K. Schirmer, F. Reinstorf, M. Schirmer, J. Soil Sed. 8 (2008) 23–33.
[53] J.M. Lo, K.S. Lin, J.C. Wei, J.D. Lee, J. Radioanal. Nucl. Chem. 216 (1997) 121–124.
[54] C.P. Lin, B.T. Hsieh, G. Ting, S.J. Yeh, J. Radioanal. Nucl. Chem. 236 (1998) 165–168.
[55] T.J. Shaw, T. Duncan, B. Schnetger, Anal. Chem. 75 (2003) 3396–3403.
[56] P. Liang, Y. Liu, L. Guo, Spectrochim. Acta Part B 60 (2005) 125–129.
[57] R.K. Katarina, M. Oshima, S. Motomizu, Talanta, 79 (2009) 1252–1259.
[58] R.K. Katarina, M. Oshima, S. Motomizu, Talanta 78 (2009) 1043–1050.
[59] C.Z. Huang, Z.C. Jiang, B. Hu, Talanta 73 (2007) 274–281.
[60] V. Umashankar, R. Radhamani, K. Ramadoss, D.S.R. Murty, Talanta 57 (2002) 1029–1038.
[61] J. Yin, B. Hu, M. He, Z.C. Jiang, Anal. Chim. Acta 594 (2007) 61–68.
[62] S.W. Wu, M. He, B. Hu, Z.C. Jiang, Microchim. Acta 159 (2007) 269–275.
[63] D. Rahmi, Y. Takasaki, Y.B. Zhu, H. Kobayashi, S. Konagaya, H. Haraguchi, T. Umemura, Talanta 81 (2010) 1438–1445.
[64] D. Rahmi, Y. Zhu, E. Fujimori, T. Umemura, H. Haraguchi, Talanta 72 (2007) 600–606.
[65] C.H. González, A.J.Q. Cabezas, M.F. Díaz, Talanta 68 (2005) 47–53.
[66] K. Hennebrüder, R. Wennrich, J. Mattusch, H.J. Stark, W. Engewald, Talanta 63 (2004) 309–316.
[67] Y.B. Zhu, A. Itoh, T. Umemura, H. Haraguchi, K. Inagaki, K. Chiba, J. Anal. At. Spectrom. 25 (2010) 1253–1258.
[68] Y.B. Zhu, T. Umemura, H. Haraguchi, K. Inagaki, K. Chiba, Talanta 78 (2009) 891–895.
[69] Q. Fu, L.M. Yang, Q.Q. Wang, Talanta 72 (2007) 1248–1254.
[70] Y.B. Zhu, K. Inagaki, H. Haraguchi, K. Chiba, J. Anal. At. Spectrom. 25 (2010) 364–369.
[71] M.G. Lawrence, A. Greig, K.D. Collerson, B.S. Kamber, Appl. Geochem. 21 (2006) 839–848.
[72] C.L. Chou, J.D. Moffatt, Fresenius’ J. Anal. Chem. 368 (2000) 59–61.
[73] K. Srogi, Anal. Lett. 41 (2008) 677–724.
[74] M.D. Pereira, M.A.Z. Arruda, Microchim. Acta 141 (2003) 115–131.
[75] M. L. Chen, T. Yang, T., J. H. Wang, Anal. Chim. Acta 631 (2009) 74–79.
[76] C.H. Chung, I. Brenner, C.F. You, Spectrochim. Acta Part B 64 (2009) 849–856.
[77] P. Grinberg, L. Yang, Z. Mester, S. Willie, R.E. Sturgeon, J. Anal. At. Spectrom. 21 (2006) 1202–1208.
[78] H.F. Hsieh, W.S. Chang, Y.K. Hsieh, C.F. Wang, Talanta 79 (2009) 183–188.
[79] D.R. Lide, CRC Handbook of Chemistry and Physics, 88th ed., CRC Press, 2008.
[80] T. Linsinger, Comparison of measurement result with the certified value, in: European Reference Materials: Application Note 1, Joint Research Centre Institute for Reference Materials and Measurements (IRMM), Geel, Belgium, 2005.
[81] L. Cuadros-Rodríguez, A. M. García-Campaña, E. Almansa-López, F. J. Egea-González, M. L. C. Cano, A. G. Frenich, J. L. Martínez-Vidal, Anal. Chim. Acta 478 (2003) 281–301.
[82] V.L. Snoeyink, D. Jenkins, Water Chemistry, Wiley, New York, 1980.
[83] M.J. Greaves, H. Elderfield, G.P. Klinkhammer, Anal. Chim. Acta 218 (1989) 265–280.
[84] P. Möller, P. Dulski, J. Luck, Spectrochim. Acta Part B 47 (1992) 1379–1387.
[85] D. Yeghicheyan, J. Carignan, M. Valladon, M.B. Le Coz, F. Le Cornec, M. Castrec-Rouelle, M. Robert, L. Aquilina, E. Aubry, C. Churlaud, A. Dia, S. Deberdt, B. Dupré, R. Freydier, G. Gruau, O. Hénin, A.M. de Kersabiec, J. Macé, L. Marin, N. Morin, P. Petitjean, E. Serrat, Geostandard Newsletter. 25 (2001) 465–474.
[86] M. Tuzen, K. O. Saygi, M. Soylak, Talanta 71 (2007) 424–429.
[87] S. Saracoglu, M. Soylak, L. Elci, Trace Elem. Electrolytes 18 (2001) 129–133.
[88] T. Yabutani, Y. Utsunomiya, Y. Kado, Y. Tani, H. Kishimoto, A. Fukuda, J. Motonaka, Anal. Sci. 22 (2006) 1021–1024.
[89] J. Bettmer, N. Jakubowski, A. Prange, Anal. Bioanal. Chem. 386 (2006) 7–11.
[90] A. Sanz-Medel, M. Montes-Bayón, M. de la Campa, J. R. Encinar, J. Bettmer, Anal. Bioanal. Chem. 390 (2008) 3–16.
[91] S. H. Hu, S.H. Zhang, Z. C. Hu, Z. Xing, X. R. Zhang, Anal. Chem. 79 (2007) 923–929.
[92] M. Tuzen, D. Citak, D. Mendil, M. Soylak, Talanta 78 (2009) 52–56.