研究生: |
周瑪麗 Tjiu, Mary Annie |
---|---|
論文名稱: |
外貌主義和馬基維利主義對非人化的影響 AI 面試採用的中介角色 The Influences of Lookism and Machiavellianism on Dehumanization: The Mediating Role of Adoption of AI Interview |
指導教授: |
劉玉雯
Liu, Yu-Wen |
口試委員: |
史習安
Shih, Hsi-An 洪世章 Hung, Shih-Chang 錢克瑄 Chien, Ker-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 國際專業管理碩士班 International Master of Business Administration(IMBA) |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | 人力資源 、採用人工智慧面試 、人工智慧採用 、人工智慧面試 、人工智慧 、去人性化 、工作面試 、外貌歧視 、馬基雅維利主義 、求職者 |
外文關鍵詞: | human resource, adoption of AI interview, AI adoption, AI interview, artificial intelligence, dehumanization, job interviews, lookism, Machiavellianism, job applicant |
相關次數: | 點閱:68 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
將人工智慧(AI)應用於求職面試中,展現出變革性的潛力,有助於解決長期以來影響求職面試及其決策公平性的內在偏見,如外貌歧視和馬基雅維利主義。本研究探討了AI應用在平衡這些偏見中所扮演的角色,以促進公平性並減少求職面試中的去人性化風險。本研究採用兩階段問卷調查法,收集了98位具有求職面試經驗的參與者數據。通過迴歸分析和假設檢驗,探討了AI應用如何影響他們在求職面試中的看法和經驗,特別是那些因外貌歧視而處於劣勢、表現出高度馬基雅維利特質且考慮AI面試的申請者。
研究結果顯示,儘管AI面試被認為是一種減少外貌歧視的客觀評估平台,但其完全消除此類偏見的效果並不明確。此外,具有高馬基雅維利特質的申請者對AI面試表現出明顯的排斥,這表明他們認為這些技術威脅了他們的操縱能力。值得注意的是,AI面試有助於減少申請者的去人性化感受。
本研究強調在人力資源與AI平衡整合的必要性,並關注其潛力和局限性。本研究的意涵主張採取戰略方法,最大限度地提高求職面試中減少外貌歧視和馬基雅維利主義的公平性,同時將去人性化降至最低。
The adoption of Artificial Intelligence (AI) in job interview offers transformative potential to address inherent human biases such as lookism and Machiavellianism, which have long influenced the fairness of job interview and its decisions. This study examines the role of AI adoption in balancing biases which promotes fairness and reducing the risk of dehumanization in job interviews. Employing a two-stage questionnaire survey, this research collected data from 98 participants with job interview experience as the applicants. Through regression analyses and hypothesis testing, the study explored how AI adoption influences their perceptions and experiences in job interview, particularly those disadvantaged by lookism, exhibit high Machiavellian traits, and consider AI interview.
Our findings reveal that while AI interviews are perceived as a method to mitigate lookism by offering a more objective assessment platform, their effectiveness in fully neutralizing such biases is not definitive. Furthermore, applicants with high Machiavellian traits show a distinct aversion to AI interviews, suggesting a perception of these technologies as a threat to their manipulative capabilities. Notably, AI interviews contribute to reducing applicants’ feelings of dehumanization.
This study highlights the need for a balanced integration of human and AI in job interviews, mindful of both potentials and limitations. The implications of this research advocate a strategic approach that maximizes fairness from lookism and Machiavellianism in job interview while minimizing dehumanization.
Abdul, A., Vermeulen, J., Wang, D., Lim, B.Y., Kankanhalli, M., 2018. Trends and trajectories for explainable, accountable and intelligible systems: An HCI research agenda. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–18. April 2018. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0001
Allsopp, J., Eysenck, H. J., & Eysenck, S. B. (1991, January). Machiavellianism as a component in psychoticism and extraversion. Personality and Individual Differences, 12(1), 29–41. https://doi.org/10.1016/0191-8869(91)90129-y
Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Herrera, F., 2020. Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fus. 58, 82–115. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0007
Bagozzi, R. P., & Yi, Y. (1988b). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94. https://doi.org/10.1007/bf02723327
Bankins, S., Formosa, P., Griep, Y., & Richards, D. (2022, February 2). AI Decision Making with Dignity? Contrasting Workers’ Justice Perceptions of Human and AI Decision Making in a Human Resource Management Context. Information Systems Frontiers, 24(3), 857–875. https://doi.org/10.1007/s10796-021-10223-8
Baron, R. M., & Kenny, D. A. (1986b). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173
Bies, R. (2001). Interactional (in)justice In Greenberg & Cropanzano (Eds.), Advances in Organizational Justice (pp. 89–118). Stanford University Press. https://web.mit.edu/curhan/www/docs/Articles/15341_Readings/Justice/Interactional(In)JusticeTheSacredAndTheProfane_Bies.pdf
Buller, D. B., & Burgoon, J. K. (1996). Interpersonal Deception Theory. Communication Theory, 6(3), 203–242. https://doi.org/10.1111/j.1468-2885.1996.tb00127.x
Bureau of Labor Statistics. (2012, February). Job opening and labor turnover survey: Highlights. http://www.bls.gov/web/jolts/jlt_labstatgraphs/pdf.
Burgoon, J. K., Stoner, G. M., Bonito, J., & Dunbar, N. E., (2003, January). Trust and deception in mediated communication. Proceedings of the Hawaii international conference on computer and systems sciences, Hawaii, HI. https://doi.org/10.1109/hicss.2003.1173792
Cavico, F. J., Muffler, S. C., & Mujtaba, B. G. (2013). Appearance discrimination in employment: Legal and ethical implications of “lookism” and “lookphobia”. Equality, Diversity and Inclusion: An International Journal, 32(1), 83–119. http://refhub.elsevier.com/S0277-5395(13)00093-9/rf0200
Chae, J. (2019, August). What makes us accept lookism in the selfie era? A three-way interaction among the present, the constant, and the past. Computers in Human Behavior, 97, 75–83. https://doi.org/10.1016/j.chb.2019.03.012
Choo, C.W., 1991. Towards an information model of organizations. Can. J. Inf. Sci. 16 (3), 32–62. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0012
Christie, R., & Geis, F. L. (Eds.). (1970). Studies in Machiavellianism. New York: Academic Press. In Elsevier eBooks. https://doi.org/10.1016/c2013-0-10497-7
Christoff, K. (2014). Dehumanization in organizational settings: Some scientific and ethical considerations. Frontiers in Psychology, 8, 748. https://doi.org/10.3389/fnhum.2014.00748.
Colquitt, J. A., & Rodell, J. B. (2015). Measuring justice and fair- ness. In: R. S. Cropanzano & M. L Ambrose (Eds.), The oxford handbook of justice in the workplace (p.187–202). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199981 410.013.8.
Corcoran, K., Crusius, J., & Musweiler, T. (2011). Social comparison: Motives, standards, and mechanisms. In D. Chadee (Ed.). Theories in social psychology (pp. 119–139). Oxford, UK: Wiley-Blackwell. http://refhub.elsevier.com/S0747-5632(19)30104-9/sref13
Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1), 98–104. https://doi.org/10.1037/0021-9010.78.1.98
Dodge, J., Liao, Q.V., Zhang, Y., Bellamy, R.K., Dugan, C., 2019. Explaining models: An empirical study of how explanations impact fairness judgment. In: Proceedings of the 24th International Conference on Intelligent User Interfaces, pp. 275–285. March 2019. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0020
Duan, Y., Edwards, J.S., Dwivedi, Y.K., 2019. Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int. J. Inf. Manage. 48, 63–71. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0021
Duong, N. T., & Pham Thi, T. D. (2022, September 28). How does AI recruitment influence satisfaction among student job-seekers? The role of self-efficacy as a moderator and mediator. The Education and Science Journal, 24(8), 64–94. https://doi.org/10.17853/1994-5639-2022-8-64-94
European Commission. (2021). Regulatory framework proposal on Artificial Intelligence. Brussels, Belgium. Retrieved from: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
Festinger, L. (1954). A theory of social comparison processes. Human Relations, 7, 117–140. https://doi.org/10.1177/001872675400700202.
Fleming, P., & Zyglidopoulos, S. C. (2008). The escalation of deception in organizations. Journal of Business Ethics, 81(4), 837–850. https://doi.org/10.1007/s10551-007-9551-9
Fletcher, C. (1992). Ethical issues in the selection interview. Journal of Business Ethics, 11(5-6), 361–367. https://doi.org/10.1007/bf00870548
Fornell, C. and Larcker, D.F. (1981), “Evaluating structural equation models with unobservable variables and measurement error: algebra and statistics”, Journal of Marketing Research, Vol. 18 No. 3, pp. 382-388. https://doi.org/10.2307/3150980
Frishammar, J., Floren, H., Wincent, J., 2010. Beyond managing uncertainty: Insights from studying equivocality in the fuzzy front end of product and process innovation projects. IEEE Trans. Eng. Manage. 58 (3), 551–563. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0024
Fritts, M., & Cabrera, F. (2021, September 29). AI recruitment algorithms and the dehumanization problem. Ethics and Information Technology, 23(4), 791–801. https://doi.org/10.1007/s10676-021-09615-w
Gehrsitz M. Looks and labor: do attractive people work more? Labour. 2014; 28(3):269–87.
Golossenko, A., Palumbo, H., Mathai, M., & Tran, H. (2023, March 2). Am I being dehumanized? Development and validation of the experience of dehumanization measurement. British Journal of Social Psychology, 62(3), 1285–1329. https://doi.org/10.1111/bjso.12633
Green, B., Chen, Y., 2019. Disparate interactions: An algorithm-in-the-loop analysis of fairness in risk assessments. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, pp. 90–99. January 2019. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0026
Hamermesh, Daniel S., & Biddle, Jeff E. (1994). Beauty and the labor market. American Economic Review, 84, 5. http://refhub.elsevier.com/S0277-5395(13)00093-9/rf0090
Haslam, N. (2006). Dehumanization: An integrative review. Personality and Social Psychology Review, 10(3), 252–264. https://doi.org/10.1207/s15327957pspr1003_4.
Hogue, M., Levashina, J., & Hang, H. (2012, October 27). Will I Fake It? The Interplay of Gender, Machiavellianism, and Self-monitoring on Strategies for Honesty in Job Interviews. Journal of Business Ethics, 117(2), 399–411. https://doi.org/10.1007/s10551-012-1525-x
James, Heather R. (2008). If you are attractive and you know it, please apply: Appearance based discrimination and employer discretion. Valparaiso University Law Review, 42, 629–677. http://refhub.elsevier.com/S0277-5395(13)00093-9/rf0100
Jarrahi, M.H., 2018. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus. Horiz. 61 (4), 577–586. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0034
Jonason, P. K., & Webster, G. D. (2010, June). The dirty dozen: A concise measure of the dark triad. Psychological Assessment, 22(2), 420–432. https://doi.org/10.1037/a0019265
Kellogg, K. C., Valentine, M. A., & Christin, A. (2020). Algorithms at work: The new contested terrain of control. Academy of Management Annals, 14(1), 366–410. https://doi.org/10.5465/annals. 2018.0174.
Kenny, D. A., Kashy, D. A., & Bolger, N. (1998). Data analysis in social psychology. The handbook of social psychology, 1(4), 233-265. https://psycnet.apa.org/record/1998-07091-006
Kleinberg, J., Ludwig, S., Mullainathan, C., & Sunstein, C. (2020). Algorithms as discrimination detectors. Proceedings of the National Academy of Sciences of the United States of America, 117(48), 30096–30100. https://doi.org/10.1073/pnas.1912790117
Lee, C., & Cha, K. (2023, March). FAT-CAT—Explainability and augmentation for an AI system: A case study on AI recruitment-system adoption. International Journal of Human-Computer Studies, 171, 102976. https://doi.org/10.1016/j.ijhcs.2022.102976
Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1), 1–15. https://doi.org/10.1177/2053951718756684.
Levashina, J., & Campion, M. A. (2006). A Model of Faking Likelihood in the Employment Interview. International Journal of Selection and Assessment, 14(4), 299–316. https://doi.org/10.1111/j.1468-2389.2006.00353.x
Levashina, J., & Campion, M. A. (2007, November). Measuring faking in the employment interview: Development and validation of an interview faking behavior scale. Journal of Applied Psychology, 92(6), 1638–1656. https://doi.org/10.1037/0021-9010.92.6.1638
Lind, E. (2001). Fairness heuristic theory: Justice judgments as pivotal cognitions in organizational relations. In J. Greenberg & R. Cropanzano (Eds.), Advances in Organizational Justice (pp. 56–88). Stanford University Press. https://www.researchgate.net/profile/E-Lind/publication/239987517_Fairness_heuristic_theory_Justice_judgments_as_pivotal_cognitions_in_organizational_relations/links/00b4952852573f1a6b000000/Fairness-heuristic-theory-Justice-judgments-as-pivotal-cognitions-in-organizational-relations.pdf
Lockey, S., Gillespie, N., & Curtis, C. (2020). Trust in artificial intelligence: Australian insights. The University of Queensland and KPMG. https://doi.org/10.14264/b32f129.
London, A.J., 2019. Artificial intelligence and black-box medical decisions: accuracy versus explainability. Hastings Cent. Rep. 49 (1), 15–21. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0040
Lucas, K. (2015). Workplace dignity: Communicating inherent, earned, and remediated dignity. Journal of Management Studies, 52(5), 621–646. https://doi.org/10.1111/joms.12133
Macan, T. (2009). The employment interview: A review of current studies and directions for future research. Human Resource Management Review, 19, 203–218. https://doi.org/10.1016/j.hrmr.2009.03.006
McClintock, E. A. (2014). Beauty and Status: the illusion of exchange in partner selection? American Sociological Review, 79(4), 575–604. https://doi.org/10.1177/0003122414536391
Meuter, M.L., Ostrom, A.L., Bitner, M.J., Roundtree, R., 2003. The influence of technology anxiety on consumer use and experiences with self-service technologies. J. Bus. Res. 56 (11), 899–906. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0041
Mujtaba, D.F., Mahapatra, N.R., 2019. Ethical considerations in AI-based recruitment. In: 2019 IEEE International Symposium on Technology and Society (ISTAS), pp. 1–7. November 2019. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0042
Ochmann, J., Laumer, S., 2019. Fairness as a determinant of AI adoption in recruiting: an interview-based study. In: Diffusion Interest Group in Information Technology 2019 Proceedings, pp. 1–9. December 15. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0044
Parks, F. R., & Kennedy, J. H. (2007). The Impact of Race, Physical Attractiveness, and Gender On Education Majors’ and Teachers’ Perceptions of Student Competence. Journal of Black Studies, 37(6), 936–943. https://doi.org/10.1177/0021934705285955
Pena, A., Serna, I., Morales, A., Fierrez, J., 2020. Bias in multimodal AI: Testbed for fair automatic recruitment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 28–29. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0047
Pich, M.T., Loch, C.H., Meyer, A.D., 2002. On uncertainty, ambiguity, and complexity in project management. Manag. Sci. 48 (8), 1008–1023. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0048
Posthuma, R. A., Morgeson, F. P., & Campion, M. A. (2002). Beyond employment interview validity: A comprehensive narrative review of recent research and trends over time. Personnel Psychology, 55, 1–81. https://doi.org/10.1111/j.1744-6570.2002.tb00103.x
Robins, P. K., Homer, J. F., & French, M. T. (2011). Beauty and the Labor Market: Accounting for the Additional Effects of Personality and Grooming. Labour, 25(2), 228–251. https://doi.org/10.1111/j.1467-9914.2010.00511.x
Simorangkir, D. N. (2013, September). Lookism in Indonesia’s public relations industry. Women’s Studies International Forum, 40, 111–120. https://doi.org/10.1016/j.wsif.2013.05.014
Skarlicki, D. P., & Folger, R. (1997). Retaliation in the workplace: The roles of distributive, procedural, and interactional justice. Journal of Applied Psychology, 82(3), 434–443. https://doi.org/10.1037/0021-9010.82.3.434.
Sobel, M. E. (1982). Asymptotic Confidence Intervals for Indirect Effects in Structural Equation Models. Sociological Methodology, 13, 290-312. https://doi.org/10.2307/270723
Stevens, C. K., & Kristof, A. L. (1995). Making the right impression: A field study of applicant impression management during job interviews. Journal of Applied Psychology, 80, 587–606. https://doi.org/10.1037/0021-9010.80.5.587
Teodorescu, M.H., Morse, L., Awwad, Y., Kane, G.C., 2021. Failures of fairness in automation require a deeper understanding of human-ML augmentation. MIS Quart. 45 (3), 1483–1500. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0059
Van Esch, P., Black, J.S., 2019. Factors that influence new generation candidates to engage with and complete digital, AI-enabled recruiting. Bus. Horiz. 62 (6), 729–739. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0061
Walther, J. B. (1992). Interpersonal effects in computer-mediated interaction: A relational perspective. Communication Research, 19, 52–90. https://doi.org/10.1177/009365092019001003.
Wang, D., Yang, Q., Abdul, A., Lim, B.Y., 2019. Designing theory-driven user-centric explainable AI. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–15. May 2019. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0064
Weiss, B., & Feldman, R. S. (2006). Looking Good and Lying to Do It: Deception as an Impression Management Strategy in Job Interviews. Journal of Applied Social Psychology, 36(4), 1070–1086. https://doi.org/10.1111/j.0021-9029.2006.00055.x
Zhou, J., Chen, F., Holzinger, A., 2022. Towards explainability for AI fairness. In: International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers, pp. 375–386. http://refhub.elsevier.com/S1071-5819(22)00194-X/sbref0066