研究生: |
官振豐 Chen-Feng Kuan |
---|---|
論文名稱: |
環境相容奈米複合材料之製備與性質研究 Study on the Preparation and Characterizations of Environment Conscious Nanocomposites |
指導教授: |
馬振基
Chen-Chi M. Ma |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 306 |
中文關鍵詞: | 生物分解 、複合材料 、奈米碳管 、水交聯 |
外文關鍵詞: | Biodegradability, composite, carbon nanotube, water crosslinking |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對木質纖維素、聚磷酸氨及碳奈米管等不同型態的環境友善補強材料或填充材,透過矽烷偶合劑、馬來酸酐或相容化劑等加以改質,並成功地與線性低密度聚乙烯及生物可分解脂肪族聚酯等環境相容材料加以複合,得到環境相容奈米複合材料。
本研究第一部份製備具水交聯反應之環境相容塑木複合材料。利用乙烯基偶合劑(VTMOS)做木質纖維素的偶合,先將具雙官能基的VTMOS之矽氧烷(-OCH3)端,與木質纖維的-OH基反應,VTMOS的另一端的乙烯基(-CH=CH2)則利用雙螺桿熔融反應押出時,以自由基反應方式接枝到基材(LLDPE、PBS)主鏈上,使其具有Sol-Gel的官能基,並藉由溫水進行水交聯反應。本系統所製備具水交聯反應之環境相容塑木複合材料,利用Solid State 13C-NMR證實,木質纖維素改質的VTMOS成功的接枝至PBS主鏈上,並且藉由1H-NMR圖譜下氫積分面積的比值,求得VTMOS接枝率為6.3%。複合材料的機械性質與熱性質,隨著水交聯時間的增加而增加。以具水交聯反應之木質纖維/LLDPE複合材料而言,當木質纖維含量為30wt%,且複合材料經4小時水交聯反應後,抗拉強度增加87%,抗折強度增加137.5%,而熱性質方面,熱變形溫度由55.7℃提升至88.5℃。
本研究第二部分製備APP/脂肪族聚酯生分解無鹵難燃複合材料。利用TEOS對APP進行偶合,並以熔融反應方式接枝到PBS主鏈上,藉由矽烷/水交聯的方式,一方面改善難燃劑APP與基材PBS之間的界面,藉以提昇複合材料的機械性質,另一方面藉由水交聯形成的網狀結構,改善基材燃燒時滴垂現象,使其達到阻燃的效果。結果發現,以TEOS含量1 phr改質之APP/PBS生分解難燃複合材料,以水交聯0.5小時後,交聯度達18.8%,所形成的Si-O-Si網狀結構能有效抑制滴垂效應,使UL-94 達V0等級,而以水交聯4小時後,L.O.I值更達到28(提升16.7%)可有效降低APP難燃劑的添加量。
本研究第三部份製備具水交聯反應碳奈米管/線性低密度聚乙烯奈米複合材料。首先將乙烯基矽烷偶合劑(VTMOS)接枝到LLDPE基材上,同時多壁碳奈米管(MWNT)利用自由基的方式,將VTMOS接枝到MWNT上(VTMOS-g-MWNT),形成碳奈米管及基材上均具有可進行Sol-Gel水交聯的官能基,然後將此二者以雙螺桿熔融混摻(System 2)。另外,也比較MWNT以VTMOS偶合處理,再進行雙螺桿熔融反應押出的方式(System 1)。僅添加0.5 phr 含量的VTMOS-g-MWNT /LLDPE奈米複合材料,可有效提升基材的拉伸強度65.6%,及衝擊強度24.8%,基材經4小時水交聯反應之後,熱變形溫度大幅提昇32.8%,熱裂解溫度提升42℃。
本研究第四部份製備的具導電性質碳奈米管/聚乳酸奈米複合材料。利用自由基反應的方式,將具有碳碳雙鍵的馬來酸酐接枝到多壁碳奈米管上,以提供MWNT與基材PLA之間,產生化學鍵結及物理鍵結,而增加兩材質之間的界面相容性。並探討多壁碳奈米管(MWNT)添加於高結晶性PLA(high-crystalline PLA, HC-PLA)與低結晶性PLA(low-crystalline PLA, LC-PLA),比較結晶性的高低對於導電奈米生物可分解複合材料的電氣性質、機械性質、熱性質的影響。添加碳奈米管可有效提升PLA基材的機械強度及熱性質。且電氣性質方面,未改質碳管與改質碳管含量為0.5 phr時,基材的表面電阻即產生大幅的變化;當同樣含量未改質碳管補強的基材之表面電阻於LC-PLA(2.8×109 Ω/□)中,遠低於HC-PLA(1.05×1013 Ω/□)。而改質的碳奈米管當含量0.5 phr時,在LC-PLA基材的表面電阻比純LC-PLA下降了1013 orders(5.46×1015 至 2.61 × 102 Ω/□)。碳奈米管可誘導低結晶性聚乳酸產生結晶,此現象可藉由MA改質的MA-g-MWNT,在基材中的分散程度所控制。
This research utilized different environmental friendly reinforcements or fillers, such as cellulose, ammonium polyphosphate, and carbon nanotube, to reinforce the environmentally conscious polymer, such as linear low-density polyethylene and biodegradable polyester, forming the eco- and nano-composites.
Wood flour (WF) reinforced linear low-density polyethylene (LLDPE) composites were prepared in the first part of this dissertation. Water-crosslinking technique was used to improve the physical properties of wood composite. Composites were compounded in a twin-screw extruder and treated with a coupling agent (vinyltrimethoxysilane, VTMOS), and then moisture-crosslinked in hot water. Composite after water-crosslinking treatment exhibited better mechanical properties than the non-crosslinked one because of the improved chemical bonding between the wood fiber and the polyolefin matrix. As the wood flour content reaches to 30wt% and after water-crosslinking for 4 hours, tensile strength and flexural strength are increased by 87%(from 14.7 to 27.5 MPa)and 137.5%(from 11.2 to 26.6 MPa)with respect to that of non-crosslinked ones. Photographs of Scanning Electron Microscopy (SEM) of the fracture surfaces of water-crosslinked composites showed superior interfacial strength existed between the wood fiber and the polyolefin matrix. Thermal analyses of water-crosslinked composites indicate that thermal degradation temperature and heat deflection temperature of composite increase with the increasing of water-crosslinking time. The heat deflection temperature of the composite can be raised from 55.7□C to 88.5□C.
The preparation and characterization on the novel water-crosslinked cellulose reinforced poly (butylene succinate) composites have been conducted. Wood flour (raw cellulose) reinforced poly (butylene succinate) (PBS) composites have been prepared utilizing unique water-crosslinking technique to improve the physical properties of composites. The composites were treated with a coupling agent ( Vinyltrimethoxysilane ) and then were compounded in a twin screw extruder. The compound was moisture-crosslinked. 13C NMR, 1H NMR and FT-IR spectra were utilized to monitor and characterize the water-crosslinking reaction. Composites via water-crosslinking treatment exhibits improved mechanical properties due to the interfacial bonding between the wood fiber and the PBS matrix. SEM microphotographs of the fracture surfaces of water-crosslinked composites showed superior interfacial linkage existed between the wood fiber and the PBS matrix. Thermal analysis on the water-crosslinked composites indicated that thermal degradation temperature of composite increased with the increasing of water-crosslinking time. POM microphotographs revealed that the water-crosslinking reaction can increase the crystalline rate but decrease the spherulites size of PBS. Biodegradation tests showed that adding wood flour increased the biodegradability of composite; however, the water-crosslinking reaction may reduce the biodegradability of wood composite.
The second part of this dissertation focuses on the effect of water-crosslinking reaction on the flame retardancy and non-dripping properties of ammonium polyphosphate / poly (butylene succinate) composites. Ammonium polyphosphate (APP) reinforced poly (butylene succinate) (PBS) composites have been prepared utilizing a unique water-crosslinking technique to improve the flame retardancy and non-dripping property of composites, meanwhile, maintain the main structure of composites. The composites were treated with a coupling agent ( Tetraethoxysilane, TEOS ) and then were compounded in a twin screw extruder. The compound was moisture-crosslinked. FT-IR spectra were used to monitor the water-crosslinking reaction. Composites via water-crosslinking treatment exhibits improved mechanical properties due to the interfacial bonding between the APP and the PBS matrix. Microphotographs of SEM of the fracture surfaces of water-crosslinked composites showed the void size was increased with the increasing of water-crosslinking time. Composite with 15wt% APP were classified as UL-94 V-2. However, the ones with only 0.5 hr water-crosslinking reaction were classified as UL-94 V-0. Thermal analysis on the water-crosslinked composites indicated that thermal degradation temperature of composite increased with the increasing of water-crosslinking time. DSC results revealed that the water-crosslinking reaction can limit the crystalline rate of PBS.
The third part of this dissertation is the preparation of carbon nanotube / linear low density polyethylene composites by a water-crosslinking reaction. A novel method to prepare the multiwall carbon nanotube (MWCNT) / linear low density polyethylene composite is demonstrated. The combination of free radical reaction and water-crosslinking reaction to prepare the MWCNT/LLDPE composite was characterized by Raman and FT-IR. Mechanical properties and thermal stability of composite were significantly improved after silane modification and water-crosslinking reaction. The crosslinking network between LLDPE and carbon nanotube plays a vital role for the improvement of mechanical properties and thermal stability of composite. The tensile strength and impact strength of 0.5 phr VTMOS-g-MWCNT / LLDPE composites can increase 65.6% and 24.8%, respectively, comparing with pristine MWCNT /LLDPE composites. The heat deflection temperature of 4phr VTMOS-g-MWCNT / LLDPE composites (via 4 hr water-crosslinking reaction) was 79.7□C, which is much higher than pristine LLDPE (60.0□C). Thermal degradation temperature of composite can increase 42oC via silane modification and water-crosslinking reaction.
The fourth part of this dissertation is to elucidate the mechanical, electrical and thermal characteristics of novel multi-wall carbon nanotubes / lowly and highly crystalline poly (lactic acid) nanocomposites. This work presents a new approach to prepare multi-wall carbon nanotubes / polylactide (PLA) nanocomposite. Comparisons of carbon nanotube-reinforced high-crystalline and low-crystalline PLA nanocomposites were discussed. High electrical conductivity of nanocomposite can be achieved at a low carbon nanotube loading. When only 0.5phr modified MWNT was added to LC-PLA, the surface resistance of the nanocomposite reduced from 5.46×1015 to 2.61 × 102 Ω/□ (by 1013 orders). Carbon nanotubes cause the mechanical characteristics of low-crystalline PLA to be better than those in high-crystalline PLA. Only 0.5 phr modified MWCNT induces crystallization, and improves the thermal properties of the nanocomposite. The extent of the dispersion of carbon nanotubes in low-crystalline PLA matrix can be used to control carbon nanotube-induced crystallization
參考文獻:
1. 馬振基,關旭強, 張文吉” 國際環境材料-發展現況與趨勢”工業材料91期,2000年。
2. http://gdn.ema.org.tw/newsletter/gdnEpaper20040700.htm。
3. 山本良一, “環境材料”, 王天民譯, 北京化學工業出版社,1997。
4. 姜智埕,蔡世榮”木塑與天然纖維塑膠複合材料在亞太的發展機會和障礙”,化工資訊與商情,2005 Chemical Monthly No. 25。
5. 塑膠中心塑膠e學院
6. 洪世淇,「生物分解性塑膠」,塑膠資訊No.62, 2002。
7. R. A. Gross; B. Kalra, Science, Vol. 297, pp803~807, ( 2002 )
8. J. Lunt, Polymer Degradation and Stability, Vol. 59, pp145~152,( 1998 )
9. E. T. H. Vink; K. R. Ra’bago; D. A. Glassner; P. R. Gruber, Polymer Degradation and Stability, Vol. 80, pp403~419, ( 2003 )
10. V. Krikorian; D. J. Pochan, Chem. Mater., ( 2003 )
11. Z. Jianming, D. Yongxin, S. Harumi, T. Hideto,N. Isao, Y. Shouke, and O. Yukihiro, Macromolecules 2005.
12. F. Masahiro and D. Yoshiharu, Biomacromolecules 2003, 4, 1301.
13. L. Cartier; T. Okihara; Y. Ikada; H. Tsuji; J. Puiggali; B. Lotz, Polymer, Vol. 41, pp8909~8919, ( 2000 )
14. S. S. Ray; P. Maiti; M. Okamoto; K. Yamada; K. Ueda, Macromolecules, Vol. 35, pp3104~3110, ( 2002 )
15. F. Takashi. Polymer Degradation and Stability, 59(1998) 209.
16. 鄭德之,「生物分解性塑膠市場開始起飛」2002, http://www.itis.org.tw
17. 黃朝國,” 生物可分解材料Bionolle與澱粉合膠之製備及性質研究”, 中國文化大學碩士論文91年.
18. 美國穀物協會,「生物可分解塑膠」1998.
19. S. Iijima, Nature (London), 354, 56, (1991).
20. H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, and R. E. Smalley, Nature (London), 318, 162, (1985).
21. 張自恭,碳六十,財團法人國家實驗研究院國家高速網路與計算中心,知識庫網頁,NanoScience 奈米科學網,奈米小辭典(http://nano.nchc.org.tw/)
22. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, (1995).
23. M.S. Dresselhaus, G .Dresselhaus, P.C. Eklund. Fullerenes and Carbon Nanotubes, Academic,San Diego, 1996.
24. M. S. Dresselhaus, G. Dresselhaus, R. Saito. Physic of Carbon nanotubes, Carbon1995, 33(7): 833-891.
25. Peter J. F. Harris, Carbon Nanotubes and Related Structures, Published by Cambridge University Press.
26. Z. R. Thostenson, T.W. Chou, Composites Science and Technology 61 (2001) 1899-1912
27. 張營煌、陳燈桂、張文吉、馬振基,”碳奈米管的結構、特性與高分子複合材料的最新發展”,塑膠資訊第70期,民國九十一年九月。
28. 黃贛麟,”中空奈米碳球性質簡介”,化工資訊,民國九十一年十二月
29. S. Komareni, J. Mater. Chem 1992, 2, 1219-1230.
30. N. Hansen, T. Leffers and H. Lilholt. Inter. Sympo. On Matal. And Mater. Sci. Rskidle, Denmark, p15,1981.
31. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi and O. Kamigaito, J. Mater. Res.,1993, 8, 1179-1184.
32. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi and O. Kamigaito. J. Appl. Poym. Sci., 1993, 49, 1259-1264.
33. S. Talapatra, S. K. Saha, S. K. Chakravarti, S. C. Guhaniyogi, Polym. Bull., 1983, 10, 21-27.
34. S. Talapatra, S. K. Chakravarti, S. C. Guhaniyogi, J. Macromol. Scichem., 1985, A22, 1611-1621.
35. J. Bhattacharya, S. Talapatra, S. K. Saha, J. Appl. Polym. Sci., 1990, 39, 2237-2244.
36. M.Oehring, F. Appel, Appl. Phys. Lett., 1995, 66, 941.
37. G. Scjottner. Hybrid Sol-Gel Derived Polymer:Application of Multifunctional Materials. Chemistry of Materials, 13, p3422, 2001
38. J. Wen, G. L. Wilkes. Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach. Chemistry of Materials, 8, p.1667, 1996
39. J. D. Mackeuzie, J. Non-Cyst Solids, 100, 162 (1988)
40. Roy, R et al. “Reactivity of Solids: Past, Present and Future”, (1996), 253-265. Publisher: Blackwell, Oxford, UK
41. Yoldas, B. E. et. Al., Journal of Non-Crystalline Solids (1982), 51(1), 105-21
42. Schmidt, H., ”New mineral formations in ceramic bodies of heavy clay at high temperatures and their effect on the quality characteristics of the products., Ziegelindustrie International (1976), (12), 526-42
43. Novak, B.M. and Ellsworth, M.W., Material Science & Engineering A: Structural Materials ,vA162 n1-2 p257-264(1993)
44. Stephen J. Clarson, J. Anthony Semlyen , Siloxane Polymers,Prentice-Hall, 1993.
45. 李光亮,有機矽高分子化學,第一版,科學出版社,北京,1998.
46. Hans R. Kricheldorf, Silicon in Polymer Synthesis , Springer-Verlag, 1998.
47. 周宇琳,有機矽聚合物導論,第一版,科學出版社,北京,2000.
48. B. M. Novak, M. Ellsworth and C. Davies, Extended Abstracts, Japan-US Joint Seminar on Inorganic and Organometallic Polymers, 160 (1991).
49. C. J. Brinier, K. D. Keefer, R. A. Assink, B. D. Kay and C. S. Ashley, J. Non-Cyst. Solids, 63, 45 (1984).
50. R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc., 72, 5705 (1950).
51. G. De, B. Karmakar and D. Ganguli, J. Mater. Chem., 10, 2289 (2000).
52. T. Hjertberg,M. Palmlof and B. A. Sultan,J. of Appl. Polym.Sci.,42,1185(1991)
53. M. Narkis,A. Tzur and A. Vaxman,Polym. Eng. Sci.,25,857(1985)
54. Delmar C. Youngs,U. S. Patent 2,723,966(1955)
55. H. G. Scott,U. S. Patent 3,646,155(1972)
56. T. R. Santelli, US Patent No. 3,075,948 (1963).
57. H. G. Scott, and J. F. Humperies, Mod. Plast., 50, 82, (1972).
58. H. G. Scott, US Patent No. 3,646,155 (1972).
59. B. Thomas and M. Browrey, Wire J., 10, 88 (1977)
60. P. Swarbrick, W. J. Green, and C. Maillefer, US Patent No. 4,117,195 (1978).
61. R. Bloor, Plastics Technology, 27, 83-86 (1981).
62. S. Cartasegna, Rubber Chem. and Technol., 59, 722(1986).
63. T. Hjertberg, M. Palmlof, and B.-A. Sultan, J. Appl. Polym. Sci., 42, 1185-1192 (1991).
64. K. Sen, B. Mukherjee, A. S. Bhattacharyya, P. P. De, A. K. Bhowmick, J. Appl. Polym. Sci., 44, 1153-1164 (1992).
65. K. Kobayashi, S. Nakayama, T. Niwa, T. Int. J. Polym. Mate.r, 21, 147 (1993).
66. K. Sen, B. Mukherjee, A. S. Bhattacharyya, P. P. De, A. K. Bhowmick, J. Therm.. Anal., 39, 887 (1993).
67. R. J. Yan, Y. Luo, and B. Jiang, J. Appl. Polym. Sci., 47, 789(1993).
68. Kelnar,M. Schatz, J Appl. Polym. Sci., 48,669-676 (1993).
69. W. K. Wong, and D.C. Varrall, Polymer, 35, 5447-5452 (1994).
70. Toynbee, J. Polymer, 35, 438-440 (1994).
71. C. Forsyth, W. E. Baker, K. E. Russell, R. A. Whitney, J. Polym. Sci. Part A: Polym. Chem., 35,3517-3525 (1997).
72. M. Fiaz,; M. Gilbert, Adv. Polym. Technol., 17,37-5l (1998).
73. Y.-T. Shieh, T.-H. Tsai, J. Appl. Polym. Sci., 69, 255 (1998).
74. D. J. Bullen, G. Capaccio, C. J. Frye, T. Brock, Bri. Polym. J., 21, 117-123 (1989).
75. J. A. McCormick, J. R. Royer, C. R . Hwang, S. A. Khan, J. Appl. Polym. Sci., Part B: Polymer Physics, 38, 2468-2479 (2000).
76. Fumio Yoshii, Meri Suhartini, Naotsugu Nagasawa ,Hiroshi Mitomo, Tamikazu Kume,Nuclear Instruments and Methods in Physics Research B 208 (2003) 370–373
77. Kamarudin Bahari, Fumio Yoshii, Polymer Degradation and Stability 62,(1998)551-557
78. Darmawan Darwis, Hiroshi Mitomo, Fumio Yoshii, Polymer Degradation and Stability 65 (1999) 279-285
79. Minoru Nagata, Yuki Sato, Polymer 45 (2004) 87–93
80. S. Hiki, M. Miyamoto, Y. Kimura, Polymer 41 (2000) 7369–7379
81. W.E. Hennink , C.F. van Nostrum, Advanced Drug Delivery Reviews 54 (2002) 13–36
82. J.M. Rosiak, F. Yoshii, Hydrogels and their medical applications, Nucl. Instrum. Methods Phys. Res. Sec. B 151 (1999)
83. G. Giammona, G. Pitarresi, G. Cavallaro, S. Buscemi, F. Saiano, New biodegradable hydrogels based on photocros-slinkable modified polyaspartamide: synthesis and characterization, Biochim. Biophys. Acta 1428 (1999) 29–38.
84. Nijenhus AJ, Grijpma DW, Pennings AJ. Polymer 1996;37:2783.
85. Doytcheva M, Dotcheva D, Stamenova R, Orahovats A, Tsvetanov CH, Leder J. J Appl Polym Sci 1997;64:2299.
86. Kim DJ, Kim WS, Lee DH, Min KE, Park LS, Jeon IR, Seo KH. J Appl Polym Sci 2001;81:1115.
87. Vyavahare N, Kohn J. J Appl Polym Sci 1994;32:1271.
88. Darwis D, Mitomo H, Enjoji T, Yoshi F. J Appl Polym Sci 1998;68:581.
89. Song CL, Yoshii F, Kume T. J Macromol Sci: Pure Appl Chem 2001;A38:961.
90. Jin F, Hyon S-H, Iwata H, Tsutsumi S. Macromol Chem Rapid Commun 2002;23:909.
91. Storey RF, Wiggins JS, Mauritz KA, Puckett AD. Polym Compos 1993;14(1):7±16.
92. Han YK, Edelman PG, Huang SJ. J Macromol Sci 1988;A25(5-7):847-869.
93. Kharas GB, Kamenetsky M, Simantirakis J, Beinlich KC, Rizzo AMT, Caywood GA, Watson K. J Appl Polym Sci 1997;66(6):1123-1137.
94. Gresser JD, Trantolo DJ, Nagaoka H, Wise DL, Altobelli DE,Yaszemski MJ, Wnek GE. In: Wise DL, Gresser JD, Trantolo DJ, Yaszemski MJ, editors. Human biomaterials applications. Tatowa, NJ: Humana Press, 1996. p. 169-187.
95. Mattson B, Aksnes E, Huse J, Tveten C, Redford K, Stori A. Compos Interfaces 1996;4(2):57-76.
96. Mattson B, Aksnes E, Huse J, Tveten C, Redford K, Stori A. Compos Interfaces 1996;4(2):77-94.
97. Kioul A, Mascia L. J Non-Cryst Solids 1994;175:169-186.
98. Mascia L, Tang T. Polymer 1998;39(14):3045-3057.
99. Huang HH, Wilkes GL, Carlson JG. Polymer 1989;30:2001-2012.
100. Tian D, Dubois Ph, Jerome R. Polymer 1996;37(17):3983-3987.
101. Tian D, Dubois Ph, Jerome R. J Polym Sci, Part A: Polym Chem 1997;35(11):2295-2309.
102. Tian D, Blacher S, Dubois Ph, Jerome R. Polymer 1998;39(4):855-864
103. Schapman F, Couvercelle JP, Bunel C. Polymer 1998;39(4):965-971.
104. Schapman F, Couvercelle JP, Bunel C. Polymer 1998;39(4):973-979.
105. Schapman F, Couvercelle JP, Bunel C. Polymer 1998;39(20):4955-4962.
106. Schapman F, Couvercelle JP, Bunel C. Polymer 2000;41(1):17-25.
107. Helminen, H. Korhonen, J.V. Seppälä, Polymer 42 (2001) 3345-3353
108. Jurgen Troitzsch “International Plastics Flammability Handbook 2nd edition”,Hanser Publisher , Munich Vienna and New York,pp 11~231,(1990)
109. Eli M. Pearce、R. Liepins ”Flame Retardant”,Environmental Health Perspectives,Vol. 11,pp 59~69,(1975).
110. 沈永清、張信貞、莊學平、張榮樹 ”高分子難燃機構及原理 ”,化工資訊,9 卷,2 期,pp 15-32 ( 1995 )
111. 張國揚 “鹵素系難燃劑應用最新法規動向”,化工資訊,7 卷,4 期,pp 100~105,(1993)
112. Menachem Lewin 、S. M. Atlas 、Eli M. Pearce ”Flame-Retardant Polymeric Materials Vol.2”,PLENUM PRESS,LONDON and NEW YORK,pp 43~128,(1978)
113. P. A. Cusach、M. S. Heer、A. W. Monk, Polymer Degradation and Stability, 58, pp 229, (1997)
114. R. Ebdon、B. J. Hunt、M. S. Jons、F. G. Thorpe, Polymer Degradation and Stability, 54, pp 365, (1996)
115. C. Sivriev、L. Zabski, Eur. Polym. J., Vol. 30, No. 4, pp 509,(1994)
116. H. Horacek、R. Grabner, Polymer Degradation and Stability, 54, pp 205, (1996)
117. Wang PS, Chiu WY, Chen LW, Denq BL, Don TM, Chiu YS. Polymer Degradation and Stability, 66,pp 307, (1999)
118. 50. E. Tashev、L. Zabski、S. Shenkov、G. Borissov, Eur. Polym. J., Vol. 28, No. 6, pp 689, (1992).
119. iji, S.Serizawa and Y.kiuchi,“New Environmentally Conscious Flame-Retarding Plastics for Electronics products,“p245-249, 1999 Electronic Compounds and Technology Conference.
120. Ging-Ho Hsiue, Wu-Jing Wang, Feng-Chih Chang,“Synthesis, Characterization, Thermal and Flame Retardant Properties of Silicon-Based Epoxy Resins, “Journal of Applied Polymer Science, Vol 73, 1231, 1999
121. 蘇俊輝 ”塑膠的難燃性”,塑膠資訊,7 期,pp 1~14,( 1996 )
122. S. Horold, Polym. Degrad. Stab., 64, 427 (1999)
123. Lewin, S. M. Atas, and E. M. Pearce, Flame-Retardant Polymeric Materials, Plenum Press, New York, 1975
124. W.A.Rosser, S.H.Inami, and H.wise, Combust. Flame, 10,287, 1966.
125. T. Ozawa, “A New Method of Analyzing Thermogravimetric Data”, Bu11. Chem. Soc. Jpn., Vol. 38, No. 11, p.1881, 1965
126. Kissinger, H. H. E.,“Reaction Kinetics in Differential Thermal Analysis”, Anal. Chem., 1957 ; 29 , 1702
127. Van krevelen, D. W., van Herden. C. and Huntjens, F. J., Fuel, 1951; 30, 253
128. Horowitz, H. H. and Metzger, G., Anal. Chem., 1963 ; 35, 1464
129. Coats, A. W. and Redfern, J. P., Nature, 1964, 201, 689
130. MacCallum, J. R. and Tanner, J., Eur. Polym. J., 1970 ; 6, 1033
131. Vert, J. Feijen, A. Albertsson, G. Scott, E. Chiellini, 1992,“Biodegradable Polymers and Plastics”。
132. 李素菁, “Present Status of Development of Biodegradable Plastics”,Global Tech News,2000, P52。
133. NOLAN-ITU Pty Ltd,“Environment Australia Biodegradable Plastics – Developments and Environmental Impacts”,OCTOBER, 2002。
134. R. Sharma and A. R. Ray, J. Master. Sci. – Rev. Macromol. Chem. Phy., C35(2), 327 (1995)。
135. Zainuddin, M. T. Razzak, F. Yoshii, and K. Makuuchi, Polym. Degradation and Stability, 63, 311(1999)
136. T. Uesaka, K. Nakane, S. Maeda, T. Ogihara, and N. Ogata, Polymer, 41, 8449(2000)
137. Q. Zhaobin, I. Takayuki, and N.Toshio, Polymer, 44, 2503(2003)
138. Q. Zhaobin, I. Takayuki, and N.Toshio, Polymer, 44, 2799(2003)
139. Q. Zhaobin, I. Takayuki, and N.Toshio, Polymer, 44, 3095(2003)
140. Zhaobin Qiu, Takayuki Ikehara, Toshio Nishi, Polymer 44 (2003) 7519–7527
141. Zhaobin Qiu, Motonori Komurab, Takayuki Ikehara, Toshio Nishi, Polymer 44 (2003) 7749–7756
142. ILONA KLEEBERG, CLAUDIA HETZ, REINER MICHAEL KROPPENSTEDT, ROLF-JOACHIM MU¨ LLER, AND WOLF-DIETER DECKWER, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May 1998, p. 1731–1735
143. Young Jin Kim,O Ok Park, Journal of Applied Polymer Science, 72(1999)945-951
144. L. Wang; W. Ma; R. A. Gross; S. P. McCarthy, Polymer Degradation and Stability, Vol. 59, pp161~168, ( 1998 )
145. Y. H. Na; Y. He; X. Shuai; Y. Kikkawa; Y. Doi; Y. Inoue, Biomacromolecules, Vol. 3, pp1179~1186, ( 2002 )
146. C. H. Kim; K. Y. Cho; E. J. Choi; J. K. Park, Journal of Applied Polymer Science , Vol. 77, pp226~231, ( 2000 )
147. H. Tsuji; T. Yamada; M. Suzuki; S. Itsuno, Polym. Int., Vol. 52, pp269~275, ( 2003 )
148. 18. H. Tsuji; T. Yamada, Journal of Applied Polymer Science , Vol. 87, pp412~419, ( 2003 )
149. R. Dell’Erba; G. Groeninckx; G. Maglio; M. Malinconico; A. Migliozzi, Polymer, Vol. 42, pp7831~7840, ( 2001 )
150. G. Maglio; A. Migliozzi; R. Palumbo; B. Immirzi; M. G. Volpe, Macromolecular Rapid Communications, Vol. 20, pp236~238,( 1999 )
151. Ogata; G. Jimenez; H. Kawai; T. Ogihara, Journal of Polymer Science: Part B: Polymer Physics, Vol. 35, pp389~396, ( 1997 )
152. Maiti; K. Yamada; M. Okamoto; K. Ueda; K. Okamoto, Chem. Mater., Vol. 14, pp4654~4661 ( 2002 )
153. S. S. Ray; K. Yamada; M. Okamoto; Y. Fujimoto; A. Ogami; K. Ueda, Polymer, Vol. 44, pp6633~6646, ( 2003 )
154. Moon SI, Jin F, Lee CJ, Tsutsumi S, Hyon SH. Novel Carbon Nanotube/ Poly(L-latic acid) Composites; Their Modulus, Thermal Stability, and Electrical Conductivity. Macromol. Symp. 2005; 224: 287-95.
155. Chen Y, Haddon RC, Fang S, et al. Chemical attachment of organic functional groups to a single-walled carbon nanotube material. Journal of material research, 13, 2423, 1998
156. Jian Chen, Mark A. Haman, Hui Hu, Yongsheng Chen, Apparao M. Cao, Peter C. Eklund, Robert C. Haddon, Solution Properties of single-walled Carbon Nanotubes, Science, vol 282, 2, October, 1998
157. Z. Shi. Single-wall carbon nanotube colloids in polar solvents. Chemical Communications, 6, p.461-462, 2000
158. M. Ree, K Kim, S. H, Woo, H, Chang. Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities. Journal of Applied Physics, 81, 698, 1997
159. Brian C. Auman, Tanya L. Myers, David P. Higley. Synthesis and characterization of polyimides based on new fluorinated 3, 3-diaminobiphenyls. Journal of Polymer Science Part A:Polymer Chemistry 35, 12, p.2441-2451, 1997
160. Parton, J. E., Owen, S. J. T. Applied Electromagnetic 2nd edition., Macmillan publishers, London, 1986
161. Ramo, S. Whinnery, J. R. Fields and Waves in Commuication Electronics, 2nd edition, Cambridge University Press, Cambridge, England, 1986
162. Yunming Ying, Rajesh K. Saini, Feng Liang, Anil K. Sadana, Will E. Bulleps. Functionaliaztion of Carbon Nanotubes by Free Radicals. Organic Letters, 5, 9, p.1471-73, 2003
163. Zhijie Jia, Zhengyuan Wang, Cailu Xu, Ji Liang, Bingqing Wei, Dehai Wu, Shaowen Zhu, Study on poly(methyl methacrylate):carbon nanotube composites. Materials Science and Engineering A, 271, p.395-400, 1999
164. Shuhui Qin, Dongqi Qin, Warren T. Ford, Jose E. Herrera, Daniel E. Resasco, Sergei M. Bachilo, and R. Bruce Weisman “Solubilization and Purification of Single-Wall Carbon Nanotubes in Water by in Situ Radical Polymerization of Sodium 4-Styrenesulfonate” Macromolecules 2004, 37, 3965-3967 P.3965
165. Sarbajit Banerjee, Tirandai Hemraj-Benny, Stanislaus S. Wong. Covalent surface chemistry of Single-walled carbon nanotubes. Advanced Materials 17. No.1 p17-29, 2005
166. HAN-LANG WU, YU-TING YANG, CHEN-CHI M. MA*, HSU-CHIANG KUAN, Molecular Mobility of Free-Radical-Functionalized Carbon-Nanotube /Siloxane/ Poly(urea urethane) Nanocomposites, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 43, 6084–6094 (2005)
167. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Sto_ ckli T et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Physical Review Letters 1999; 82(5):944–7.
168. Shaer MSP, Windle AH. Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) Composites. Advanced Materials 1999;11(11):937–41.
169. Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters 2000;76(20):2868–70.
170. Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu Detal. Study on poly(methyl methacrylate)/carbon nanotube composites. Materials Science and Engineering A 1999;271(1–2):395–400.
171. Gong X, Liu J, Baskaran S, Voise RD, Young JS. Surfactantassisted processing of carbon nanotube/polymer Composites. Chemistry of Materials 2000;12(4):1049–52.
172. Lordi V, Yao N. Molecular mechanics of binding in carbonnanotube-polymer composites. Journal of Materials Research 2000;15(12):2770–9.
173. Wagner HD, Lourie O, Feldman Y, Tenne R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Applied Physics Letters 1998;72(2):188–90.
174. Cooper CA, Young RJ, Halsall M. Investigation into the deformation of carbon nanotubes and their composites through the use of raman spectroscopy. Composites Part A: Applied Science and Manufacturing 2001;32(3-4):401–11.
175. Ajayan PM, Schadler LS, Giannaris C, Rubio A. Single-walled nanotube-polymer composites: strength and weaknesses. advanced materials 2000;12(10):750–3.
176. Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters 1998;73(26): 3842–4.
177. Jin L, Bower C, Zhou O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Applied Physics Letters 1998;73(9):1197–9.
178. Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI. Aligned single-wall carbon nanotubes composites by melt processing methods. Chemical Physics Letters 2000;330(3-4): 219–25.
179. Gommans HH, Alldredge JW, Tashiro H, Park J, Magnuson J, Rinzler AG. Fibers of aligned single-walled carbon nanotubes: polarized raman spectroscopy. Journal of Applied Physics 2000; 88(5):2509–14.
180. Andrews R, Jacques D, Rao AM, Rantell T, Derbyshire F, Chen Yetal. Nanotube composite carbon .bers. Applied Physics Letters 1999;75(9):1329–31.
181. Vigolo B, Pe’ nicaud A, Coulon C, Sauder C, Pailler R, Journet C et al. Macroscopic .bers and ribbons of oriented carbon nanotubes. Science 2000;290:1331–4.
182. E. J. Vinson and J. J. Liou, “Electrostatic Discharge in Semiconductor Devices:An Overview,” Proceedings of the IEEE,vol. 86, no. 2, p.399~418, 1998.
183. D. E. Swenson, “Improved Standards for Specifying Static Control Materials,” Compliance Eng., vol. 17, p.40, 2000.
184. 吳知行, “苯胺的電化學聚合”,化工, 第44 卷第二期(1997)
185. M. Grujicic, G. Cao. A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials. Journal of Materials Science, 39, p.4441-4449, 2004
186. Chen, S. A., and Lin, L. C., “Polyaniline Doped by the New Class of Dopant, Ionic Salt: Structure and Properties”, Macromolecules, 28, 1239-1245 (1995).
187. Harry S. Katz, John V. Milewski. Handbook of fillers for plastics. New York, Van Nostrand Reinhold Co., 1987.
188. Man Wu, Leon Shaw. Electrical and Mechanical Behaviors of Carbon Nanotube-Filled Polymer Blends, Journal of Applied Polymer Science, Vol. 99, 477–488 (2006)
189. Li S, Qin Y, Shi J, Guo ZX, Li Y, Zhu D. Electrical Properties of Soluble Carbon Nanotube/Polymer Composite Films. Chem. Mater. 2005, 17, 130-135.
190. Po¨tschke P, Bhattacharyy AR, Janke A. Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer 2003, 44: 8061–8069.
191. Petra Po¨tschke, Arup R. Bhattacharyya, Andreas Janke. Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. European Polymer Journal 40 (2004) 137–148.
192. J.B. Bai, A. Allaoui. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Composites: Part A 34 (2003) 689–694.
193. Xiaowen Jiang, Yuezhen Bin, Masaru Matsuo. Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer 46 (2005) 7418–7424.
194. C. Klason,J. Kubāt,and H. E. Strömvall,Int. J. Polym. Mater.,10,159 (1984).
195. H. Dalväg,C. Klason,and H. E. Strmvall,Int. J. Polym. Mater.,11, 9 (1985).
196. R. T, Woodhams,G. Thomas,and D. K. Rodgers,Polym. Eng. Sci.,24,1166 (1984).
197. R. Gauthier,C.Joly,A. C. Coupas, H. Gauthier and M.Escoubes,Polym. Compos.,19,301(1998)
198. P. Zadorecki and A. J. Michell,Polym. Compos.,10,69 (1989).
199. D. Maldas and B. V. Kokta,Compos. Interfaces. 1,87 (1993).
200. 黃國雄,「利用廢棄聚乙烯與木粒片製造塑膠木料複合板」,台灣林業科學,12 卷,443 頁 ,1997
201. L. M. Matuana,J. Vinyl & Additive Technol.,3,265(1997)
202. P. Hedenberg and P. Gatenholm,J. Appl. Polym. Sci.,56,641 (1995).
203. H. Chtourou,B. Riedl,and A. Ait-Kadi,J. Reinf. Plast. Compos.,11,372 (1992).
204. P. Hedenberg and P. Gatenholm,J. Appl. Polym. Sci,60,2377 (1996).
205. B.M. Novak and M.W. Ellsworth, Material Science & Engineering A: Structural Materials , Properties, Microstructure and Processing, vA162 n1-2 p257-264(1993)
206. Camero, Journal of Sol-Gel Science and Technology, p191-201 (1996)
207. K. A. Mauritz, Journal of Polymer Science, Vol. 67, 1799-1810(1998)
208. R. Karnani,M. Krishnan,and R. Narayan,Polym. Eng. Sci.,37,476(1997)
209. Philippe Dubois,Polymer,40,3091(1999)
210. Jo Ann Ratto,Polymer,40,6777(1999)
211. Sung Wook Lim,Kwang Hee Lee,European Polymer J.,35,1875(1999)
212. Y. Shikinami,M. Okuno,Biomaterials,20,859(1999)
213. Takashi Fujimaki,Polymer Degradation and Stability 59,209(1998)
214. T. Uesaka,K. Nakane,Polymer,41,8449(2000)
215. K. Kuwabara, Z. Gan, T. Nakamura, H. Abe, Y. Doi. Temperature dependence of the molecular motion in the crystalline region of biodegradable poly(butylene adipate), poly(ethylene succinate), and poly(butylene succinate). Polym Degrad Stab 2004; 84: 105.
216. Z. Gan, H. Abe, H. Kurokawa, Y. Doi. Solid-State Microstructures, Thermal Properties, and Crystallization of Biodegradable Poly(butylene succinate) (PBS) and Its Copolyesters. Biomacromolecules 2001; 2:605.
217. M.S. Nikolic, J. Djonlagic. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym Degrad Stab 2001; 74: 263.
218. Z. Qiu, M. Komura, T. Ikehara, T. Nishi. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer 2003;44 : 7781.
219. A. Cao, T. Okamura, K. Nakayama, Y. Inoue, T. Masuda. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stab 2002; 78 : 107.
220. Z. Qiu, T. Ikehara, T. Nishi. Melting behaviour of poly(butylene succinate) in miscible blends with poly(ethylene oxide).Polymer 2003;44: 3095.
221. Z. Qiu, T. Ikehara, T. Nishi. Poly(hydroxybutyrate)/poly(butylene succinate) blends: miscibility and nonisothermal crystallization. Polymer 2003;44: 2503.
222. K. Okamoto, S. S. Ray, M. Okamoto. New Poly(butylene succinate)/Layered Nanocomposites. II. Effect of Organically Modified LayeredSilicates on Structure, Properties, Melt Rheology, and Biodegradability. Journal of Polymer Science: Part B: Polymer Physics 2003; 41:3160.
223. Y. Someya, T. Nakazato, N. Teramoto, M. Shibata. Thermal and Mechanical Properties of Poly(butylenes succinate) Nanocomposites with Various Organo-Modified Montmorillonites. Journal of Applied Polymer Science 2004;91: 1463 .
224. S. S. Ray, K. Okamoto, M. Okamoto. Structure-Property Relationship in Biodegradable Poly(butylenes succinate)/Layered Silicate Nanocomposites. Macromolecules 2003; 36: 2355.
225. Zainuddin , M. T. Razzak, F. Yoshii , K. Makuuchi. Radiation effect on the mechanical stability and biodegradability of CPP/Bionolle blend. Polym Degrad Stab 1999; 63 : 311.
226. P. Nugroho, H. Mitomo, F. Yoshii, T. Kume, K. Nishimura. Improvement of Processability of PCL and PBS Blend by Irradiation and its Biodegradability. Macromol. Mater. Eng. 2001; 5:286.
227. D. J. Kim, W. S. Kim, D. H. Lee, K. E. Min, L. S. Park, I. K. Kang, I. R. Jeon, K. H. Seo. Modification of Poly(butylene succinate) with Peroxide: Crosslinking, Physical and Thermal Properties, and Biodegradation. Journal of Applied Polymer Science 2001; 81: 1115.
228. T. Jana , B. C. Roy , S. Maiti. Biodegradable film 7. Modification of the biodegradable film for fire retardancy. Polym Degrad Stab 2000; 69 : 79.
229. J. Ge, W. Zhong, Z. Guo, W. Li, K. Sakai. Biodegradable Polyurethane Materials from Bark and Starch. I. Highly Resilient Foams. Journal of Applied Polymer Science 2000; 77: 2575.
230. Y.F. Shih, Y.T. Wang, R.J. Jeng, K.M. Wei. Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy. Polym Degrad Stab 2004; 86: 339.
231. S. Matko, A. Toldy, S. Keszei, P. Anna, G. Bertalan, G. Marosi. Flame retardancy of biodegradable polymers and biocomposites. Polym Degrad Stab 2005; 88 :138.
232. M. Rahman, C. S. Brazel. The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci. 2004; 29:1223.
233. B. Li, J. He. Investigation of mechanical property, flame retardancy and thermal degradation of LLDPE–wood-.bre composites. Polym Degrad Stab 2004; 83: 241.
234. G. Marosi, A. Marton, P. Anna, G. Bertalan, B. Marosfoi, A. Szep. Ceramic precursor in flame retardant systems. Polym Degrad Stab 2002; 77: 259.
235. A. Riva, G. Camino, L. Fomperie, P. Amigouet. Fire retardant mechanism in intumescent ethylene vinyl acetate compositions. Polym Degrad Stab 2003; 82 :341.
236. B. Schartel, U. Braun, U. Schwarz, S. Reinemann. Fire retardancy of polypropylene/flax blends. Polymer 2003;44: 6241.
237. S. Giraud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Delobel, F. Poutch. Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polym Degrad Stab 2005; 88 : 106.
238. P. Anna, G. Marosi, S. Bourbigot, M. L. Bras, R. Delobelc. Intumescent flame retardant systems of modified rheology. Polym Degrad Stab 2002; 77: 243.
239. S.V. Levchik, G.F. Levchik, A.I. Balabanovich, G. Camino, L. Costa. Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants. Polym Degrad Stab 1996; 54: 217.
240. A.R. Horrocks, B.K. Kandola, P.J. Davies, S. Zhang, S.A. Padbury. Developments in flame retardant textiles e a review. Polym Degrad Stab 2005; 88 : 3.
241. J. Li , B. Li , X. Zhang , R. Su. The study of flame retardants on thermal degradation and charring process of manchurian ash lignin in the condensed phase. Polym Degrad Stab 2001; 72: 493.
242. A. A. Faroq, D. Price, G. J. Milnes. Thermogravimetric analysis study of the mechanism of pyrolysis of untreated and flame retardant treated cotton fabrics under a continuous flow of nitrogen. Polym Degrad Stab 1994;44 : 323.
243. P. J. Davies, A. R. Horrocks, A. Alderson. The sensitisation of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy. Polym Degrad Stab 2005; 88: 114.
244. Z. Wang, Y. Hu, Z. Gui, R. Zong. Halogen-free flame retardation and silane crosslinking of Polyethylenes. Polymer Testing 2003; 22: 533.
245. Y. L. Liu, G. H. Hsiue and Y. S. Chiu, J. Appl. Polym. Sci., 58, 579(1995)
246. C. P. R. Nair, G. Clouet and Y. Guilbert, Polym. Degrad. Stab., 26, 305(1989)
247. “以溶膠凝膠法製備磷/矽之有機-無機奈米複合材料及其難燃性與熱性質之研究”, 江金龍, 國立清華大學博士論文,2003
248. Chin-Lung Chiang, Feng-Tih Wanf, Chen-Chi M. Ma, Hey-Rey Chang “Flame retardance and thermal degradation of newepoxy containing silico and phosphorous hybrid creamers”Polymer Degradation and Stability 77 (2002) 273~278 .
249. Chin-Lung Chiang,Chen-Chi M.Ma “Synthesis, characterization and thermal properties of novel epoxy containingsilicon and phosphorous nanocomposites by sol-gel method”European Polymer Journal 38 (2002) 2219~2224.
250. Chin-Lung Chiang, Chen-Chi M.Ma, Dai-Lin Wu, Hsu-Chiang Kuan “Preparation, Characterization, and Properties of Novolac-Type Phenolic/SiO2 Hybrid Organic-Inorganic Nanocomposite Materials by Sol-Gel Method” Journal of Polymer Science:Part A: Polymer Chemistry, Vol. 41, 905~913(2003)
251. J. R.Van Wazer. Phophorus and Its Compounds,Interscience Publishers,Inc., New York, 1958.
252. D.E.C.Corbridge. Phophorus, Elesvier Co., 1990, p44.
253. G .Montaudo, S. Puglisi, C.E. Scamporrino, D. Vitalini. Mechanism of thermal degradation of polyurethanes. Effect of ammonium polyphosphate. Macromolecules 1984; 17:1605.
254. Kissinger, H.H.E., Anal. Chem., 1957; 29:1702
255. L. Andre, Ceramic composites by the sol-gel method: a review. Polym. Prep., 2000, 235.
256. http://www.zyn.com/flcfw/fwtproj/Poss.htm
257. 黃仁豪, 抗靜電/靜電消散之導電塑膠材料及應用簡介,工業材料, 2004年102期, 84, 6
258. 沈永清, “導電性塑膠材料技術發展介紹”, 化工資訊, 9, p.6, 1998
259. S. S. Ray , M. Bousmina, Progress in Materials Science 2005, 50 , 962.
260. J. K. Pandey, K. R. Reddy, A. P. Kumar, R.P. Singh, Polymer Degradation and Stability 2005, 88, 234.
261. Z.G. Tang, J.T. Callaghan, J.A. Hunt, Biomaterials 2005, 26, 6618.
262. Y. Hu, Y.S. Hu, V. Topolkaraev, A. Hiltner, E. Baer, Polymer 2003, 44, 5681.
263. Y. Hu, Y.S. Hu, V. Topolkaraev, A. Hiltner, E. Baer, Polymer 2003, 44, 5711.
264. C.G. Simon Jr. , N. E. Scott, B. Kennedy, A. Sehgal, C.A. Khatri, N. R. Washburn, Biomaterials 2005 , 26, 6906.
265. X. Cao, A. Mohamed, S.H. Gordon , J.L. Willett, D.J. Sessa, Thermochimica Acta 2003, 406, 115.
266. K. Oksman, M. Skrifvars, J. F. Selin, Composites Science and Technology 2003, 63, 1317.
267. N. Teramoto, K.Urata, K.Ozawa, M. Shibata, Polymer Degradation and Stability 2004 86, 401.
268. T. Kasuga , Y. Ota, M. Nogami, Y. Abe, Biomaterials 2001, 22,19.
269. Jin-Hae Chang, Yeong Uk An, Donghwan Cho, Emmanuel P. Giannelis, Polymer 2003, 44 3715.
270. M. Pluta, Polymer 2004, 45, 8239.
271. S. S. Ray, M. Okamoto, Prog. Polym. Sci. 2003, 28, 1539.
272. S. S. Ray, K. Yamad, M. Okamoto, Y. Fujimot, A.Ogam, K. Ueda, Polymer 2003, 44, 6633.
273. M. A. Paul, C. Delcourt, M. Alexandre, Ph. Degee, F. Monteverde, Ph. Dubois, Polymer Degradation and Stability 2005, 87, 535.
274. S.I. Moon, F. Jin, C.J. Lee, S. Tsutsumi, S. H. Hyon, Macromol. Symp. 2005, 224, 287.
275. S.Z. Kang, Y.Q. Wan, H.J. Yan, J.Z. Bei, C.Wang, S. Wang, C.R. Wang, L.J. Wan, C.L. Bai , Chinese Science Bulletin 2004 , 49, 2126.
276. Simon Jr CG, Eidelman N, Deng Y, Washburn NR, Macromol Rapid Commun. 2004, 25, 2003.
277. J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer,, K. Schulte, and A.H. Windle, Polymer 1999, 40: 5967.
278. H. Geng, R. Rosen, B. Zheng, H. Shimoda, L. Fleming and J, Z. Liu, Adv. Mater. 2002, 14: 1387.
279. Han, J. Exploring carbon nanotubes for nanoscale devices. Book of Abstracts, 215th ACS National Meeting, Dallas, March 29-April 2. (1998)
280. S. Subramoney, Adv. Mater. 1998,10,1157.
281. B.I. Yakobson and R.E. Smalley, American Scientist 1997, 85,324.
282. S.I. Moon, F. Jin, C.J. Lee, S. Tsutsumi, S. H. Hyon, Macromol. Symp. 2005, 224, 287.
283. Masud S. Huda, Lawrence T. Drzal, and Manjusri Misra, Ind. Eng. Chem. Res. 2005, 44, 5593.
284. S.I. Moon, F. Jin, C.J. Lee, S. Tsutsumi, S. H. Hyon, Macromol. Symp. 2005, 224, 287.
285. K. Oksman, M. Skrifvars, J. F. Selin, Composites Science and Technology 2003, 63, 1317.
286. 杜逸虹, 聚合體學,三民書局
287. X. Cao, A. Mohamed, S.H. Gordon , J.L. Willett, D.J. Sessa, Thermochimica Acta 2003, 406, 115.
288. G. Pompe and E. Mader, Composites Science and Technology 2000, 60,2159.