研究生: |
朱家進 Chu, Chia-Chin |
---|---|
論文名稱: |
利用同步輻射光研究退火對非晶Fe/Pd多層膜轉變為序化FePd合金膜之結構變化 Synchrotron X-ray Study of the Structural Transition from Disordered Fe/Pd Multilayers to Ordered FePd Alloy under Annealing |
指導教授: |
李志浩
Chih-Hao Lee |
口試委員: |
林滄浪
Lin, Tsang-Lang 蔡佳霖 Tsai, Jai-Lin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 46 |
中文關鍵詞: | 濺鍍 、多層膜 、鐵鈀材料 、退火時間 |
外文關鍵詞: | Sputtering, Multilayer, FePd, Annealing time |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
FePd合金材料在磁性儲存元件上是具有潛力的候選材料之一,本實驗以真空直流磁控濺鍍的方式沉積Fe/Pd多層膜到室溫的MgO[001]基板上,並且以同步輻射X光量測來驗證多層膜成長方式可以讓FePd-FCT晶粒的a、b軸方向沿著膜面而讓c軸垂直於膜面,實驗將濺鍍完成的Fe/Pd多層膜以700℃在真空環境退火2-10小時,利用感應偶合電漿質譜儀、能量分佈X光光譜、X光反射率、X光繞射、X光吸收對樣品的元素組成和結構進行分析以及討論。
實驗發現濺鍍完成的未退火樣品其結構是具有非晶形多孔性多層膜的結構,而隨著退火時間的增加,膜厚以及多孔性的下降表示膜密度的上升,表示Fe/Pd多層膜逐漸轉為單層的FePd合金,X光繞射圖譜在退火樣品只有發現FePd-FCT結構中沿著c軸方向的[001]和[002]繞射峰且從Rocking-curve可以看到具有優選取向,代表FePd-FCT的晶粒容易長成c軸垂直於膜面,而從X光吸收光譜模擬以及擬合結果可以得知退火後的樣品Fe原子局部結構符合FePd-FCT結構,表示其他如Fe-BCC、Pd-FCC或者FeO的含量極少。
We aimed to study the local structure change as amorphous FePd multilayer transformed into the ordered face-center-tetragonal FePd under annealing. [Fe (2 nm)/Pd (2 nm)]30 multilayer on MgO [001] substrate were prepared using a home-built magnetron sputtering system. As made samples were annealed at 2, and 10 hours at 700 ℃ in high vacuum condition. From the EXAFS analyses for the nearest scattering paths of Fe-Fe and Fe-Pd, we found that despite the inversive change in the lattice parameters c and a, the c/a ratio and cell volume of the FePd became smaller which demonstrates a more compact structure of FePd as an effect of longer annealing time.
1. Piramanayagam, S.N., Perpendicular recording media for hard disk drives. Journal of Applied Physics, 2007. 102(1).
2. Weller, D., et al., High Ku materials approach to 100 Gbits/in^2. IEEE Transactions on Magnetics, 2000. 36(1): pp. 10-15.
3. Sato, K., B. Bian, and Y. Hirotsu, Hard magnetic properties of (001) oriented L1(0)-FePd nanoparticles formed at 773 K. Japanese Journal of Applied Physics Part 2-Letters, 2000. 39(11B): pp. L1121-L1123.
4. Corrias, A., et al., An X-ray Absorption Spectroscopy Investigation of the Formation of FeCo Alloy Nanoparticles in Al2O3 Xerogel and Aerogel Matrixes. The Journal of Physical Chemistry B, 2005. 109(29): pp. 13964-13970.
5. Clavero, C., et al., Temperature and thickness dependence at the onset of perpendicular magnetic anisotropy in FePd thin films sputtered on MgO(001). Physical Review B, 2006. 73(17): p. 10.
6. Caro, P., et al., Structure and chemical order in sputtered epitaxial FePd(0 0 1) alloys. Journal of Crystal Growth, 1998. 187(3-4): pp. 426-434.
7. Itabashi, A., et al., Surface Roughness Reduction in L1(0) Ordered FePd Alloy Thin Films Formed on MgO Single-Crystal Substrates with Different Orientations. Ieee Transactions on Magnetics, 2012. 48(11): pp. 3203-3206.
8. Ohtake, M., et al., Structure and magnetic properties of FePd-alloy epitaxial thin films grown on MgO single-crystal substrates with different orientations. Journal of Applied Physics, 2011. 109(7): p. 3.
9. Ohtake, M., et al., Structure and Magnetic Properties of CoPt, CoPd, FePt, and FePd Alloy Thin Films Formed on MgO(111) Substrates. Ieee Transactions on Magnetics, 2012. 48(11): pp. 3595-3598.
10. Endo, Y., et al., Formation of L1(0)-type ordered FePd phase in multilayers composed of Fe and Pd. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005. 44(5A): pp. 3009-3014.
11. Krupinski, M., et al., X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films. Journal of Applied Physics, 2011. 109(6): p. 7.
12. Yoshimura, S., et al., Fabrication of (001) Oriented TMR Film With Highly Ordered L1(0)-Fe(Pd,Pt) Alloy Films by Using a Very Thin Fe Underlayer. Ieee Transactions on Magnetics, 2011. 47(10): pp. 4417-4420.
13. Kumar, M.S., Temperature dependence of magnetization in Fe-Pd thin films. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2009. 162(1): pp. 59-63.
14. Gehanno, V., et al., In plane to out of plane magnetic reorientation transition in partially ordered FePd thin films. European Physical Journal B, 1999. 10(3): pp. 457-464.
15. Ohtake, M., et al., L1(0) ordered phase formation in FePt, FePd, CoPt, and CoPd alloy thin films epitaxially grown on MgO(001) single-crystal substrates. Journal of Applied Physics, 2012. 111(7): p. 3.
16. Skuza, J.R., et al., Microstructural, Magnetic Anisotropy, and Magnetic Domain Structure Correlations in Epitaxial FePd Thin Films With Perpendicular Magnetic Anisotropy. Ieee Transactions on Magnetics, 2010. 46(6): pp. 1886-1889.
17. Pierron-Bohnes, V., et al., Atomic migration in bulk and thin film L1(0) alloys: Experiments and molecular dynamics simulations, in Diffusion and Thermodynamics of Materials, J. Cermak and I. Stloukal, Editors. 2007, Trans Tech Publications Ltd: Stafa-Zurich. pp. 41-50.
18. Merkel, D.G., et al., Isotope-periodic multilayer method for short self-diffusion paths - a comparative neutron and synchrotron Mossbauer reflectometric study of FePd alloys, in Polarized Neutrons and Synchrotron X-Rays for Magnetism Conference 2009, T. Bruckel, W. Schweika, and J.M. Tonnerre, Editors. 2010, Iop Publishing Ltd: Bristol.
19. Ichitsubo, T., et al., Control of c-axis orientation of L10-FePd in dual-phase-equilibrium FePd/Fe thin films. Journal of Applied Physics, 2011. 109(3).
20. Laughlin, D.E., et al., Crystallographic aspects of L10 magnetic materials. Scripta Materialia, 2005. 53(4): pp. 383-388.
21. Ma, C.H., J.H. Huang, and H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Films, 2002. 418(2): pp. 73-78.
22. Dinnebier, R.E. and K. Friese, Introduction to the Mineralogical Sciences. Modern XRD Methods in Mineralogy 2003, Oxford, UK: Eolss Publishers
23. Ron, J. and R.L. Snyder, Introduction to X-Ray Powder Diffractometry. 1996: pp. 69-70.
24. Connolly, J.R., Introduction to X-Ray Powder Diffraction:Diffraction Basics. 2012.
25. Brown, P.J., et al., International Tables for Crystallography. 2006. p. 554-595.
26. Cullity, B.D., Elements of X-ray Diffraction. 2nd ed.: Addison-Weseley.
27. Newville, M., Fundamentals of XAFS. 2004.
28. Yasaka, M., X-ray thin-film measurement techniques. 2010.
29. Roldan Cuenya, B., et al., Enhanced hyperfine magnetic fields for face-centered tetragonal Fe(110) ultrathin films on vicinal Pd(110). Physical Review B, 2005. 71(6): p. 064409.
30. Meschel, S.V., J. Pavlu, and P. Nash, The thermochemical behavior of some binary shape memory alloys by high temperature direct synthesis calorimetry. Journal of Alloys and Compounds, 2011. 509(17): pp. 5256-5262.
31. Kong, L.T. and B.X. Liu, Correlation of magnetic moment versus spacing distance of metastable fcc structured iron. Applied Physics Letters, 2004. 84(18): pp. 3627-3629.
32. Wei, D.H. and Y.D. Yao, Controlling microstructure and magnetization process of FePd (001) films by staged thermal modification. Applied Physics Letters, 2009. 95(17).
33. Vogel, J., et al., Structure and magnetism of Pd in Pd/Fe multilayers studied by x-ray magnetic circular dichroism at the Pd L(2,3) edges. Physical Review B, 1997. 55(6): pp. 3663-3669.