研究生: |
葉騰豪 Teng-Hao Yeh |
---|---|
論文名稱: |
摻雜釹之鈦酸鉍/氧化鋁構成之鐵電記憶體場效應電晶體之製作與檢測 Fabrication and characterization of Neodymium-substituted Bismuth Titanate/Al2O3 for MFIS-FET |
指導教授: |
甘炯耀
Jon-View Gan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 場效應電晶體 、鈦酸鉍 、氧化鋁 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論 文 摘 要
由於金屬/鐵電層/絕緣層/半導體場效電晶體(MFIS-FETs)為結構所製作的鐵電記憶體,需要有高相對介電常數值,厚度薄的高品質絕緣層,因此製作合適的絕緣層將是MFIS研究的重要課題。本實驗利用原子層化學氣相沉積(ALCVD)製作的Al2O3薄膜來當作MFIS結構中的絕緣層,並且搭配摻雜釹的鈦酸鉍鐵電材料,來驗證此系統的效果。
實驗過程中又有比較不同厚度的鐵電層及絕緣層對記憶窗改變的比較,並且利用不同的熱處理方式在氧化鋁絕緣層上面鍍製不同介電常數的鈦酸鉍,同時比較鐵電層介電常數不同造成的記憶窗改變,發現記憶窗在鐵電極化主導的機制中,記憶窗寬度約等於鐵電層的兩倍矯頑電壓。而鐵電層若能分配到更多的壓降,鐵電極化機制所能主導記憶窗的範圍將越大,記憶窗寬度也會增加。
論文最後也對MFIS的保持力進行量測,經過了一萬秒之後,記憶窗仍能維持60%以上的水準。
[1.1] 網路資料www.eepw.com.cn/show.aspx?id=4239&cid=68
[1.2] W. I. Kinney, W. Shepherd, W. Miller, J. Evans and R. Womack, IEDM*87 (1987) p850.
[1.3] S. Y. Wu, IEEE Trans. Electron Devices ED-21(8) (1974) p499
[1.4] 呂正傑,詹世雄,奈米通訊,鐵電記憶體簡介,第五卷第四期33.
[1.5] 陳怡誠,高介電薄膜簡介http://www.challentech.com.tw/doc1/
[1.6] Bi-MONTHLY Newsletter 2004,7,15 http://www.nanoelab.itri.org.tw/Newsletter/NL930715.pdf
[1.7] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature(London) 401, 682(1999).
[1.8] 出處:http://www.ixbt.com/mainboard/feram-tech.shtml
[1.9] Y. Tarui, T. Hirai, K. Teramoto, H. Koike and K. Nagashima, Applied Surface Science 113/114 (1997) p656.
[2.1] L. L. Hench and J. K. West, J. Wiley and Sons, ”Principle of electronic ceramics”New York,1990.
[2.2] 鄭晃忠, “高密度鐵電性記憶體之趨勢發展”, 電子月刊, 第五卷第五期, p.137.
[2.3] J. F. Scott,C. A. P. de Araujo,L. D. McMillan,H. Yoshimori,H. Watatnade,T. Mihara,M. Azuma,T. Ueda,D. Ueda,and G. Kano, “Ferroelectric Thin Films in Integrated Microelectric Devices”,Ferroelectrics,133,(1992)47.
[2.4] 何彬明, “FeRAM 產品化的崎嶇道路”, 電子月刊, 第五卷第三期, p.166.
[2.5] Park, B. H. et al. Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Appl. Phys. Lett. 74, 1907–1909 (1999).
[2.6] T. Kojima, T. Sakai, T. Watanabe, H. Funkubo, K. Saito, M. Osada, Appl. Phys. Lett. 80, 2746 (2002).
[2.7] M. Osada, Y. Noguchi, M. M. Miyayama, J. Appl. Phys. 92, 1518(2002).
[2.8] S. E. Cummins, L. E. Cross, J. Appl. Phys. Lett. 39, 2268(1968).
[2.9] Y.C.Chen,Y.M.Sun,C.P.Lin,J.Y.Gan, JOURNAL OF CRYSTAL GROWTH 268 (1-2): 210-214 JUL 15 2004
[2.10] H. N. Lee, D. Hesse, N. Zakharov, U. Gosele, SCIENCE 296,2006 (2002).
[2.11] 李雅明, 吳世全, 陳宏明, 鐵電記憶元件
[2.12] 網路資料CSD and characterization of ferroelectric and dielectric thin film. (http://www.symetrixcorp.com/Pub009.pdf)
[2.13] S. B. Desu, and D. P. Vijav, Mater. Sci. Eng., B 32, 83 (1995).
[2.14] J. H. Choi, J. Y. Lee, and Y. T. Kim, Appl. Phys. Lett. 74, 2933 (1999).
[2.15]A. Waxman and K. H. Zaininger, “ Al2O3-silicon insulator gate field effect transistor”, Appl. Phys. Lett. 12, 109 (1968)
[2.16]V. Kottler, M. F. Gillies, and A. E. T. Kuiper, “An in situ x-ray photoelectron spectroscopy study of AlOx spin tunnel barrier formation”, J. Appl. Phys. 89, 3301 (2001)
[2.17]M. F. Gillies, A. E. T. Kuiper, R. Coehoorn, and J. J. T. M. Donkers, “Compositional, structural, electrical characterization of plasma oxidized thin aluminum layer for spin-tunnel junctions”, J. Appl. Phys. 88, 429 (2000)
[2.18]Suvi Haukka, Eeva-Liisa, and Toumo Suntola, “Surface coverage of ALE precursors on oxides”, Appl. Surf. Sci. 82/83, 548-552 (1994)
[2.19]H. S. Nalwa, “Handbook of thin film materials: Vol. 1 Deposition and processing of thin films”, publishes by Academic Press, P.103~P.159
[2.20] Y.Fukuda,K.Aoki,K.Numata,and A.Nishimura, Jpn.J.Appl.Phys.33,5255(1994)
[2.21] Kyoung-Tae Kim, Jung-Mi Lee, Sang-Hun Song, Chang-Il Kim
Thin Solid Films 475 (2005) 166– 170
[2.22] T. Y. Tseng and S. Y. Lee Appl. Phys. Lett. VOL 83, No. 5 4 AUGUST 2003
[2.23] S. K. Lee, Y. T. Kim, Seong-II Kim, and C. E. Lee, J. Appl. Phys. 91,9303(2002)
[2.24] K. Sugibuchi, Y. Kurogi, and N. Endo, J. Appl. Phys. 46, 2877 (1975)
[2.25]R. R. Mehta, B. D. Silverman and J. T. Jacobs, J. Appl. Phys. 44, 3379(1973)
[2.26] T. P. Ma, and Jin-Ping Han, IEEE ELECTRON DEVICE LETTERS,VOL. 23, NO. 7, JULY 2002
[2.27]R. R. Mehta, B. D. Silverman and J. T. Jacobs, J. Appl. Phys. 44, 3379(1973)
[2.28] G. Arlt, Ferroelectrics 76 (1987)457
[2.29]J. W. Hong, W. Jo, D. C. Kim, S. M. Cho, H. J. Nam, H.M. Lee and J. U. Bu, Appl.Phys. Lett. 75 (1999) 3183
[2.30] http://www.zqsplc.net/Article_Show.asp?ArticleID=816
[2.31] 電子月刊, 鐵電記憶元件特輯, April, 2002.
[2.32] Byung-Eun Park,Kazuhiro Takahashi, and Hiroshi Ishiwara, Appl. Phys. Lett. VOL 85, No.19 8 November 2004
[3.1] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981),
[3.2] 李清楠,2005年清華大學材料工程學系碩士論文
[4.1] Dieter K. Schroder, 「Semiconductor Material and Device Characterization, 2nd edition」
[4.2] San-Yuan Chen, Chia-Liang Sun, Appl. Phys. Lett. 80, 3168 (2002).
[4.3] A. D. Li, D. Wu, H. Q. Ling, M. Wang, Z. Liu, N. Ming, J. Cryst. Growth 235, 394(2002)
[4.4] R. Iijima, Appl. Phys. Lett. 79, 2240 (2001)
[4.5] H. N. Lee, D. Hesse, N. Zakharov, U. Gosele, SCIENCE 296,2006 (2002).
[4.6] Y. M. Sun, Y. C. Chen, J. Y. Gan, J. C. Hwang, Jpn. J. Appl. Phys. 41, 892 (2002).
[4.7] S. K. Kim, M. Miyayama, and H. Yanagida, Mater. Res. Bull. 31, 121 (1996).
[4.8] Z. Xu, B. Kaczer, and D. Wouters J. Appl. Phys. 96. 1614 (2004)
[4.9]D.Ito, N.Fujimura,and T.Yoshimura J. Appl. Phys. 93,5663(2003)
[4.10]C.H.Haung, Y.K.Wang, and T.Y.Tseng JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 24 (8): 2471-2476 JUL 2004
[4.11]S. Y. Lee et al., “A FRAM technology using1T1C and triple metal layers for high performance FRAMs,” 1999 Symposium on VLSI Technology, pp.141,1999
[4.12]Yasuo TARUI, “Future DREM Development and Prospects for Ferroelectric Memories,” IEDM, pp. 1.2.1-1.2.10, 1994