簡易檢索 / 詳目顯示

研究生: 許淑惠
Hsu Shu-Hui
論文名稱: 呼吸同步放射治療系統的評估
Evaluation of the respiratory gated radiotherapy system
指導教授: 江啟勳
Chi-Shiun Chiang
李宗其
Chung-Chi Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 75
中文關鍵詞: 放射治療治療誤差呼吸同步放射治療腫瘤控制機率正常組織副作用機率
外文關鍵詞: radiotherapy, treatment uncertainties, respiratory gated radiotherapy, tumor control probability, normal tissue complication probability
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 放射治療的目的是使腫瘤細胞可以得到最高的劑量,而周圍正常組織所受到的傷害可以減至最低。為了達到此理想,治療儀器及技術也不斷的發展以及改進,然而也提高了對治療誤差的敏感度,所以必須減少治療誤差以減少正常組織的傷害。治療誤差主要的來源有兩個:設定誤差及器官位移。設定誤差即病人治療位置誤差;器官位移所造成的誤差是因為呼吸、心跳、吞嚥、胃腸蠕動等造成器官位置或形狀的改變。而其中以呼吸所造成的器官位移影響最大,如腹部腫瘤可能因此位移3公分。為了解決此問題,所以近來發展了一套呼吸同步放射治療系統,使治療時射束可以隨著病人呼吸進行調控,當腫瘤到達某一位置時再進行照射,因此可以減小安全邊距以及正常組織的劑量。而本研究著重於此系統的評估,主要分成三部分:發展影像處理系統自動追蹤橫膈膜位移、比較橫膈膜和皮膚移動之間的關係、利用腫瘤控制機率及正常組織副作用機率來評估呼吸同步治療系統的可行性。
    在評估影像處理系統可行性方面,與人工定位系統比較結果,誤差為1.06±1.25 mm,此誤差相對於呼吸所造成的誤差來說仍在容許範圍內,所以此系統可用於臨床上。在探討皮膚與橫膈膜移動之間的關係方面,發現它們之間有時間差,但由於目前臨床資料不夠多,所以它們之間的關係尚不清楚。而在評估呼吸同步放射治療系統可行性方面,目前只評估一位肺癌病人,其結果顯示,呼吸調控可以減少安全邊距以及正常組織副作用機率。從目前結果看來,呼吸同步放射治療系統在臨床上的可行性很高,而且若真的能用於臨床上,對於治療胸部或腹部腫瘤將有很大的助益。


    The goal of radiotherapy is to deliver as much dose to the tumor as possible while sparing surrounding normal tissues from radiation toxicity. The goal can be achieved by the continuous advancement of new treatment technology. On the other hand, these developments would also lead to increasing sensitivity to treatment uncertainties, mainly due to setup error and organ motion. Setup error is also called patient positioning error, deriving from everyday treatment variation. Organ motion could be caused by breathing, heartbeat, swallowing, and peristaltic motion. Organ motion caused by breathing has the largest impact on treatment accuracy. To solve this problem, a respiratory gating device which could deliver radiation treatment synchronized with patient breathing to reduce radiation toxicity to normal tissues is developed. The main objectives of this project are divided into three parts: developing new image processing software, finding the relation between skin movement and diaphragm displacement, and evaluating the feasibility of clinical respiratory gated radiotherapy by means of normal tissue complication probability and tumor control probability.
    The difference of the traced position of diaphragm between the automatic image tracing software and manual tracing was 1.06±1.25 mm and was much smaller than the average displacement caused by breathing. The result suggested that image processing system can be used in clinical settings. Time delay was observed when comparing the respiratory patterns of skin movement and diaphragm displacement. However, due to insufficient patient data, the relationship between these two movements is still indecisive. In evaluating the clinical feasibility of the respiratory gating system, one patient with lung cancer was taken as a demonstrative case. The result showed that respiratory gating treatment can diminish safe margin and normal tissue complication probability. This example has demonstrated the feasibility of clinical application of this system.

    英文摘要………………………………………………………………………I 中文摘要………………………………………………………………………II 誌謝…………………………………………………………………………III 目錄……………………………………………………………………………IV 圖目錄………………………………………………………………………VII 表目錄…………………………………………………………………………IX 第一章 緒論…………………………………………………………………1 1.1 前言…………………………………………………………………1 1.1.1 背景………………………………………………………1 1.1.2 治療體積定義…………………………………………….2 1.1.3 治療的不確定性………...……………………………………..2 1.1.4 呼吸同步放射治療的概念…………………………………….7 1.2 研究動機與目的……………………………………………………...9 1.3 論文架構……………………………………………………………..10 第二章 臨床適用性評估的理論基礎………………………………………11 2.1 簡介….. ……………………………………………………………...11 2.2 劑量-體積分佈圖…………………………………………………….11 2.3 劑量反應曲線………………………………………………………..12 2.4 正常組織副作用機率與腫瘤控制機率……………………………..13 2.4.1 正常組織副作用機率的模式……………………………14 2.4.2 腫瘤控制機率的模式………………………22 2.4.3 本研究所使用的模式……………………………………25 第三章 儀器與設備…………………………………………………………26 3.1 簡介…………………………………………………………………..26 3.2 Skin motion detection sensor…………………………………….26 3.3 Organ motion detection system……………………………………28 3.4 Integrated control system…………………………………………28 3.5 Integrated treatment position fixation device. ……………31 第四章 實驗步驟與方法……………………………………………………33 4.1 簡介…………………………………………………………………...33 4.2 病人資料收集………………………………………………………...33 4.3 影像追蹤系統的發展及評估………………………………………...34 4.3.1 影像追蹤系統的概念……………………………………34 4.3.2 確定影像追蹤系統的臨床可行性………………………35 4.4 呼吸同步放射治療系統的評估……………………………………...36 4.4.1 橫膈膜位移參考點的選擇………………………………36 4.4.2 呼吸模式的探討…………………………………………36 4.4.3 皮膚位移與橫膈膜位移的關係…………………………36 4.4.4 評估工具的發展…………………………………………37 4.4.5 臨床可行性評估…………………………………………39 第五章 結果與討論…………………………………………………………40 5.1 簡介…………………………………………………………………...40 5.2 評估影像處理系統的可行性………………………………………...40 5.3 橫膈膜位移參考點的決定…………………………………………...42 5.4 呼吸模式的探討……………………………………………………...43 5.5 皮膚位移與橫膈膜位移的關係……………………………………...44 5.6 評估呼吸同步放射治療的結果……………………………………...48 5.6.1 劑量-體積分佈圖………………………………………49 5.6.2 正常組織副作用機率……………………………………51 5.6.3 腫瘤控制機率……………………………………………52 第六章 結論…………………………………………………………………53 參考文獻……………………………………………………………………55 附錄A…………………………………………………………………………62 附錄B………………………………………………………………………….65 附錄C………………………………………………………………………….69 附錄D………………………………………………………………………….73

    1. Kutcher, G. J., Mageras, G. S., and Liebel, S. A. Control, Correction, and Modeling of Setup Errors and Organ Motion. Semin Radiat Oncol 5: 134-145, 1995.
    2. Ketting, C. H., Austin-Seymour, M., Kalet, I., Unger, J., Hummel, S., and Jacky, J. Consistency of three-dimensional planning target volumes across physicians and institutions. Int J Radiat Oncol Biol Phys 37: 445-53., 1997.
    3. Booth, J. T., and Zavgorodni, S. F. Set-up error & organ motion uncertainty: a review. Australas Phys Eng Sci Med 22: 29-47., 1999.
    4. Mageras, G. S., Kutcher, G. J., Leibel, S. A., Zelefsky, M. J., Melian, E., Mohan, R., and Fuks, Z. A method of incorporating organ motion uncertainties into three- dimensional conformal treatment plans. Int J Radiat Oncol Biol Phys 35: 333-42, 1996.
    5. Lujan, A. E., Larsen, E. W., Balter, J. M., and Ten Haken, R. K. A method for incorporating organ motion due to breathing into 3D dose calculations. Med Phys 26: 715-20, 1999.
    6. McCarter, S. D., and Beckham, W. A. Evaluation of the validity of a convolution method for incorporating tumour movement and set-up variations into the radiotherapy treatment planning system. Phys Med Biol 45: 923-31., 2000.
    7. Lam, K. L., Ten Haken, R. K., McShan, D. L., and Thornton, A. F., Jr. Automated determination of patient setup errors in radiation therapy using spherical radio-opaque markers. Med Phys 20: 1145-52, 1993.
    8. Gall, K. P., Verhey, L. J., and Wagner, M. Computer-assisted positioning of radiotherapy patients using implanted radiopaque fiducials. Med Phys 20: 1153-9, 1993.
    9. Vigneault, E., Pouliot, J., Laverdiere, J., Roy, J., and Dorion, M. Electronic portal imaging device detection of radioopaque markers for the evaluation of prostate position during megavoltage irradiation: a clinical study. Int J Radiat Oncol Biol Phys 37: 205-12., 1997.
    10. Hanley, J., Lumley, M. A., Mageras, G. S., Sun, J., Zelefsky, M. J., Leibel, S. A., Fuks, Z., and Kutcher, G. J. Measurement of patient positioning errors in three-dimensional conformal radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 37: 435-44, 1997.
    11. el-Gayed, A. A., Bel, A., Vijlbrief, R., Bartelink, H., and Lebesque, J. V. Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging. Radiother Oncol 26: 162-71., 1993.
    12. Rudat, V., Flentje, M., Oetzel, D., Menke, M., Schlegel, W., and Wannenmacher, M. Influence of the positioning error on 3D conformal dose distributions during fractionated radiotherapy. Radiother Oncol 33: 56-63, 1994.
    13. Hunt, M. A., Schultheiss, T. E., Desobry, G. E., Hakki, M., and Hanks, G. E. An evaluation of setup uncertainties for patients treated to pelvic sites. Int J Radiat Oncol Biol Phys 32: 227-33, 1995.
    14. Yan, D., Wong, J., Vicini, F., Michalski, J., Pan, C., Frazier, A., Horwitz, E., and Martinez, A. Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors. Int J Radiat Oncol Biol Phys 38: 197-206, 1997.
    15. Melian, E., Mageras, G. S., Fuks, Z., Leibel, S. A., Niehaus, A., Lorant, H., Zelefsky, M., Baldwin, B., and Kutcher, G. J. Variation in prostate position quantitation and implications for three- dimensional conformal treatment planning. Int J Radiat Oncol Biol Phys 38: 73-81., 1997.
    16. Crook, J. M., Raymond, Y., Salhani, D., Yang, H., and Esche, B. Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol 37: 35-42., 1995.
    17. Ramsey, C. R., Scaperoth, D., Arwood, D., and Oliver, A. L. Clinical efficacy of respiratory gated conformal radiation therapy. Med Dosim 24: 115-9, 1999.
    18. Balter, J. M., Ten Haken, R. K., Lawrence, T. S., Lam, K. L., and Robertson, J. M. Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys 36: 167-74, 1996.
    19. Schwartz, L. H., Richaud, J., Buffat, L., Touboul, E., and Schlienger, M. Kidney mobility during respiration. Radiother Oncol 32: 84-6., 1994.
    20. Davies, S. C., Hill, A. L., Holmes, R. B., Halliwell, M., and Jackson, P. C. Ultrasound quantitation of respiratory organ motion in the upper abdomen. Br J Radiol 67: 1096-102, 1994.
    21. Hanley, J., Debois, M. M., Mah, D., Mageras, G. S., Raben, A., Rosenzweig, K., Mychalczak, B., Schwartz, L. H., Gloeggler, P. J., Lutz, W., Ling, C. C., Leibel, S. A., Fuks, Z., and Kutcher, G. J. Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 45: 603-11, 1999.
    22. Wong, J. W., Sharpe, M. B., Jaffray, D. A., Kini, V. R., Robertson, J. M., Stromberg, J. S., and Martinez, A. A. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44: 911-9, 1999.
    23. Shirato, H., Shimizu, S., Kunieda, T., Kitamura, K., van Herk, M., Kagei, K., Nishioka, T., Hashimoto, S., Fujita, K., Aoyama, H., Tsuchiya, K., Kudo, K., and Miyasaka, K. Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys 48: 1187-95, 2000.
    24. Runge, V. M., Clanton, J. A., Partain, C. L., and James, A. E., Jr. Respiratory gating in magnetic resonance imaging at 0.5 Tesla. Radiology 151: 521-3, 1984.
    25. Ohara, K., Okumura, T., Akisada, M., Inada, T., Mori, T., Yokota, H., and Calaguas, M. J. Irradiation synchronized with respiration gate. Int J Radiat Oncol Biol Phys 17: 853-7, 1989.
    26. Inada, T., Tsuji, H., Hayakawa, Y., Maruhashi, A., and Tsujii, H. [Proton irradiation synchronized with respiratory cycle]. Nippon Igaku Hoshasen Gakkai Zasshi 52: 1161-7, 1992.
    27. Kubo, H. D., and Hill, B. C. Respiration gated radiotherapy treatment: a technical study. Phys Med Biol 41: 83-91, 1996.
    28. Kubo, H. D., Len, P. M., Minohara, S., and Mostafavi, H. Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center. Med Phys 27: 346-53, 2000.
    29. Minohara, S., Kanai, T., Endo, M., Noda, K., and Kanazawa, M. Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 47: 1097-103, 2000.
    30. Ramsey, C. R., Cordrey, I. L., and Oliver, A. L. A comparison of beam characteristics for gated and nongated clinical x- ray beams. Med Phys 26: 2086-91, 1999.
    31. Bentzen, S. M., and Tucker, S. L. Quantifying the position and steepness of radiation dose-response curves. Int J Radiat Biol 71: 531-42., 1997.
    32. Brahme, A., Lind, B. K., and Kallman, P. Application of radiation-biological data for dose optimization in radiation therapy. In: Advanced Radiation Therapy : Tumour Response Monitoring and Treatment Planning ed.,edited by A. Breit. pp. 407-15, 1992.
    33. Schultheiss, T. E., Orton, C. G., and Peck, R. A. Models in radiotherapy: volume effects. Med Phys 10: 410-5, 1983.
    34. Lyman, J. T. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl 8: S13-9, 1985.
    35. Lyman, J. T., and Wolbarst, A. B. Optimization of radiation therapy, III: A method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys 13: 103-9, 1987.
    36. Withers, H. R., Taylor, J. M., and Maciejewski, B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14: 751-9, 1988.
    37. Kutcher, G. J., and Burman, C. Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 16: 1623-30, 1989.
    38. Lyman, J. T., and Wolbarst, A. B. Optimization of radiation therapy, IV: A dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 17: 433-6, 1989.
    39. Burman, C., Kutcher, G. J., Emami, B., and Goitein, M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21: 123-35, 1991.
    40. Emami, B., Lyman, J., Brown, A., Coia, L., Goitein, M., Munzenrider, J. E., Shank, B., Solin, L. J., and Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21: 109-22, 1991.
    41. Kutcher, G. J., Burman, C., Brewster, L., Goitein, M., and Mohan, R. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 21: 137-46, 1991.
    42. Niemierko, A., and Goitein, M. Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture. Radiother Oncol 20: 166-76, 1991.
    43. Nahum, A. E., and Tait, D. M. Maximizing local control by customized dose prescription for pelvic tumours. In: Advanced Radiation Therapy : Tumour Response Monitoring and Treatment Planning ed.,edited by A. Breit. pp.425-31, 1992.
    44. Niemierko, A., and Goitein, M. Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 25: 135-45, 1992.
    45. Brenner, D. J. Dose, volume, and tumor-control predictions in radiotherapy. Int J Radiat Oncol Biol Phys 26: 171-9, 1993.
    46. Jackson, A., Kutcher, G. J., and Yorke, E. D. Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Med Phys 20: 613-25, 1993.
    47. Webb, S., and Nahum, A. E. A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Phys Med Biol 38: 653-66, 1993.
    48. Martel, M. K., Ten Haken, R. K., Hazuka, M. B., Turrisi, A. T., Fraass, B. A., and Lichter, A. S. Dose-volume histogram and 3-D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol Biol Phys 28: 575-81, 1994.
    49. Okunieff, P., Morgan, D., Niemierko, A., and Suit, H. D. Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys 32: 1227-37, 1995.
    50. Ebert, M. A., and Hoban, P. W. Some characteristics of tumour control probability for heterogeneous tumours. Phys Med Biol 41: 2125-33, 1996.
    51. Wu, P. M., Chua, D. T., Sham, J. S., Leung, L., Kwong, D. L., Lo, M., Yung, A., and Choy, D. T. Tumor control probability of nasopharyngeal carcinoma: a comparison of different mathematical models. Int J Radiat Oncol Biol Phys 37: 913-20, 1997.
    52. Kwa, S. L., Theuws, J. C., Wagenaar, A., Damen, E. M., Boersma, L. J., Baas, P., Muller, S. H., and Lebesque, J. V. Evaluation of two dose-volume histogram reduction models for the prediction of radiation pneumonitis. Radiother Oncol 48: 61-9, 1998.
    53. Martel, M. K., Ten Haken, R. K., Hazuka, M. B., Kessler, M. L., Strawderman, M., Turrisi, A. T., Lawrence, T. S., Fraass, B. A., and Lichter, A. S. Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients. Lung Cancer 24: 31-7, 1999.
    54. Kutcher, G. J., and Jackson, A. Treatment plan evaluation. In: Treatment Planning in Radiation Oncology ed., edited by F. M. Khan and R. A. Potish. pp.281-94, 1998.
    55. Jackson, A., Ten Haken, R. K., Robertson, J. M., Kessler, M. L., Kutcher, G. J., and Lawrence, T. S. Analysis of clinical complication data for radiation hepatitis using a parallel architecture model. Int J Radiat Oncol Biol Phys 31: 883-91, 1995.
    56. Webb, S. The Physics of Conformal Radiotherapy : Advances in Technology. pp. 258-87, 1997.
    57. Ten Haken, R. K., Balter, J. M., Marsh, L. H., Robertson, J. M., and Lawrence, T. S. Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors. Int J Radiat Oncol Biol Phys 38: 613-7, 1997.
    58. Moiseenko, V., Battista, J., and Van Dyk, J. Normal tissue complication probabilities: dependence on choice of biological model and dose-volume histogram reduction scheme. Int J Radiat Oncol Biol Phys 46: 983-93, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE