研究生: |
李京揚 Jin-Yang Li |
---|---|
論文名稱: |
Synthesis and Characterization of the Core-Shell Au/Ga2O3 Nano-Structures 金-氧化鎵核殼狀奈米線的合成及特性研究 |
指導教授: |
周立人
Li-Jen Chou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | Ga2O3 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Innovative core-shell Au/Ga2O3 nanowires were synthesized by the reaction of metal gallium powders, silica substrates, and gold nanoparticles at 800 ℃ under a pressure of 10-2 Torr via VLS growth mechanism. Controllable diameters of the nanowires were achieved by using the variously commercial gold nanoparticles dispersed on silica substrates. The crystal structure, microstructure, chemical composition, and optical properties of the as-grown products were examined by X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning transmission electron microscope (STEM), and cathodoluminescence (CL) spectrometer, respectively. In addition, the symmetric twin boundary induced by the larger Au catalyst was found at the center of the nanowire, which plays an important role during the initial formation of the core-shell nanowires.
Based on the localized surface plasmon resonance (LSPR) effects, the investigation of optical scattering spectrum caused by embedded Au nanoparticles or nanowires with different sizes and shapes in Ga2O3 matrix was carried out. The red and blue shifts of transverse resonance peaks were measured with the increase of diameters and aspect ratios, respectively. This one-step synthesis of core-shell Au/Ga2O3 nanowires provides a potential way to produce the future functional nanodevices.
Chapter 1
[1.1] S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature, 354, (1991), pp.56-58.
[1.2] Pai-Chun Chang, Zhiyong Fan, Wei-Yu Tseng, A. Rajagopal, and Jia G. Lu, “β-Ga2O3 nanowires: Synthesis, characterization, and p-channel field-effect transistor”, Appl. Phys. Lett., 87, (2005), pp.222102.
[1.3] Parijat Deb, Hogyoung Kim, Yexian Qin, Roya Lahiji, Mark Olive Ronald Reifenberger, and Timothy Sands, “GaN Nanorod Schottky and p-n Junction Diodes”, Nano Lett., 6, (2006), pp.2893-2898.
[1.4] B.Y.Geng, X. W. Liu, X. W. Wei, S. W. Wang, and L. D. Zhang, “Low-Temperature Growth of β-Ga2O3 Nanobelts Through a Simple Thermochemical Route and Their Phonon Spectra Properties”, Appl. Phys. Lett., 87, (2005), pp.113101.
[1.5] Philip G. Collins, A. Zettl, Hiroshi Bando, Andreas Thess, and R. E. Smalley, “Nanotube Nanodevice”, Science, 278, (1997), pp.100-103.
[1.6] M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresselhaus, “Plasmon Excitation Modes in Nanowire Arrays”, J. Appl. Phys., 89, (2001), pp.2733-2736.
[1.7] Yiying Wu, and Peidong Yang, “Germanium/Carbon Core-Sheath Nanostructures”, Appl. Phys. Lett., 77, (2000), pp.43-45.
[1.8] Younan Xia, Peidong Yang, Yugung Sun, Yiying Wu, Brain Mayers, Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Adv. Mater., 15, (2003), pp.353-389.
[1.9] Xiangfeng Duan, and Charles M. Lieber, “General Synthesis of Compound Semiconductor Nanowires”, Adv. Mater., 12, (2000), pp.298-301.
[1.10] Yi Cui, Lincoln J. Lauhon, Mark S. Gudiksen, Jianfang Wang, and Charles M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires”, Appl. Phys. Lett., 78, (2001), pp.2214-2216.
[1.11] Allon I. Hochbaum, Rong Fan, Rongrui He, and Peidong Yang, “Controlled Growth of Si Nanowire Arrays for Device Integration”, Nano Lett., 5, (2005), pp.457-460.
[1.12] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation”, Solid State Communications, 109, (1999), pp.677–682.
[1.13] Heng Yu, and William E. Buhro, “Solution-Liquid-Solid Growth of Soluble GaAs Nanowires”, Adv. Mater. 15, (2003), pp.416-419.
[1.14] Xianmao Lu, Tobias Hanrath, Keith P. Johnston, and Brian A. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate”, Nano Lett., 3, (2003), pp.93-99.
[1.15] Rui-Qin Zhang, Yeshayahu Lifshitz, and Shuit-Tong Lee, “Oxide-Assisted Growth of Semiconducting Nanowires”, Adv. Mater., 15, (2003), pp.635-640.
[1.16] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Oxide-Assisted Growth and Optical Characterization of Gallium-Arsenide Nanowires”, Appl. Phys. Lett., 78, (2001), pp.3304-3306.
[1.17] Matvei Zinkevich, and Fritz Aldinger, “Thermodynamic Assessment of the Gallium-Oxygen System”, Journal of the American Ceramic Society, 87, (2004), pp.683-691.
[1.18] JCPDS Card, No. 41-1103.
[1.19] Zisen Li, Cornelis de Groot, and Jagadeesh H. Moodera, “Gallium Oxide as an Insulating Barrier for Spin-Dependent Tunneling Junctions”, Appl. Phys. Lett., 27, (2000), pp.3630-3632.
[1.20] Marilena Bartic, Yoshitaka Toyoda, Cristian-Ioan Baban, and Masami Ogita, “Oxygen Sensitivity in Gallium Oxide Thin Films and Single Crystals at High Temperatures”, Japanese Journal of Applied Physics, 45, (2006), pp.5186-5188.
[1.21] Emilio Nogales, José Ángel García, Bianchi Méndez, and Javier Piqueras, “Doped Gallium Oxide Nanowires with Waveguiding Behavior”, Appl. Phys. Lett., 91, (2007), pp.113108.
[1.22] Masahiro Orita, Hiromichi Ohta, and Masahiro Hirano, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films”, Appl. Phys. Lett., 77, (2000), pp.4166-4168.
[1.23] Lincoln J. Lauhon, Mark S. Gudiksen, Deli Wang, and Charles M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures”, Nature, 420, (2002), pp.57-61.
[1.24] Yue Wu, Jie Xiang, Chen Yang, Wei Lu, and Charles M. Lieber, “Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures”, Nature, 430, (2004), pp.61-65.
[1.25] Zhaohui Zhong, Fang Qian, Deli Wang, and Charles M. Lieber, “Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices”, Nano Lett., 3, (2003), pp.343-346.
[1.26] Mark S. Gudiksen, Lincoln J. Lauhon, Jianfang Wang, David C. Smith, and Charles M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics”, Nature, 415, (2002), pp.617-620.
[1.27] Fang Qian, Silvija Gradecˇak, Yat Li, Cheng-Yen Wen, and Charles M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes”, Nano Lett., (2005), 5, pp.2287-2291.
[1.28] H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and Ping Sheng Large, “third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold”, Appl. Phys. Lett., 70, (1997), pp.1-3.
[1.29] S. M. Prokes, O. J. Glembocki, R. W. Rendell, and M. G. Ancona, “Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy”, Appl. Phys. Lett., 90, (2007), pp.093105.
[1.30] William L. Barnes, Alain Dereux, and Thomas W. Ebbesen, “Surface Plasmon subwavelength optics”, Nature, 424, (2003), pp.824-830.
[1.31] Kyung Min Byun, and Sung June Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis”, Optic Express, 13, (2005), pp.3737-3742.
[1.32] Katherine A. Willets, and Richard P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing”, Annu. Rev. Phys. Chem., 58, (2007), pp.267-267.
[1.33] G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films”, Appl. Phys. Lett., 82, (2003), pp.3811-3813.
[1.34] K. H. Su, Q. H. Wei, and X. Zhang, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles”, Nano Lett., 3, (2003), pp.1087-1090.
[1.35] K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks”, Appl. Phys. Lett., 88, (2006), pp.063118.
[1.36] Colby A. Foss, Jr., Gabor L. Hornyak, Jon A. Stockert, and Charles R. Martin, “Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape”, J. Phys. Chem., 98, (1994), pp.2963-2971.
Chapter 3
[3.1] Keiichi Yamamoto, Hideo Kohno, and Seiji Takeda, “Fabrication of Iron Silicide Nanowires from Nanowire Templates”, Appl. Phys. Lett., 89, (2006), pp.083017.
[3.2] C. J. Frosch, and C. D. Thurmond, “The Pressure of Ga2O over Gallium-Ga2O3 Mixtures”, J. Phys. Chem., 66, (1962), pp.877-878.
[3.3] J. S. Wu, S. Dhara, C. T. Wu, K. H. Chen, and L. C. Chen, “Growth and Optical Properties of Self-Organized Au2Si Nanospheres Pea-Podded in a Silicon Oxide Nanowire”, Adv. Mater., 14, (2002), pp.1847-1850.
[3.4] F. M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Go¨sele, D. D. Ma, and S.-T. Lee, “Analysis of Silicon Nanowires Grown by Combining SiO Evaporation with the VLS Mechanism”, Journal of The Electrochemical Society, 151, (2004), pp.472-475.
[3.5] Florian M. Kolb, Andreas Berger, Herbert Hofmeister, Eckhard Pippel, Ulrich Gösele, and Margit Zachariasb, “Periodic chains of gold nanoparticles and the role of oxygen during the growth of silicon nanowires”, Appl. Phys. Lett., 89, (2006), pp.173111
[3.6] E. S. Tankins, “Thermodynamic Properties of Dilute Solutions of Oxygen in Liquid Cu-Au Alloys”, Met. Trans., 2, (1971), pp.3245-3247.
[3.7] W.Q. Han, P. Kohler-Redlich, F. Ernst, and M. Ru¨hle, “Growth and microstructure of Ga2O3 nanorods”, Solid State Communications, 115, (2000), pp.527-529.
[3.8] Xuchuan Jiang, Thurston Herricks, and Younan Xia, “CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air”, Nano Lett., 2, (2002), pp.1333-1338.
[3.9] Ying Dai, Yue Zhang, Yuan Qiang Bai, and Zhong Lin Wang, “Bicrystalline zinc oxide nanowires”, Chemical Physics Letters, 375, (2003), pp.96-101.
[3.10] Gyeong-Su Park, Won-Bong Choi, Jong-Min Kim, Young Chul Choi, Young Hee Lee, and Chang-Bin Lim, “Structural investigation of gallium oxide (β-Ga2O3) nanowires grown by arc-discharge”, Journal of Crystal Growth, 220, (2000), pp.494-500.
[3.11] C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, and L. D. Zhang, “Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires”, Appl. Phys. Lett., 78, (2001), pp.3202-3204.
[3.12] Laurent Binet, and Didier Gouruer, “Origin of the Blue Luminescence of β-Ga2O3”, J. Phys. Chem. Solids, 59, (1998), pp.1241-1249.
[3.13] Jungang Zhang, Bin Li, Changtai Xia, Guangqing Pei, Qun Deng, Zhaohui Yang, Wusheng Xu, Hongsheng Shi, Feng Wu, Yong qing Wu, and Jun Xu, “Growth and spectral characterization of β-Ga2O3 single crystals”, J. Phys. Chem. Solids, 67, (2006), pp.2448-2451.
[3.14] Encarnacion Garcia Villora, Toshiyuki Atou, Takashi Sekiguchi, Takasi Sugawara, Masae Kikuchi, and Tsuguo Fukuda, “Cathodoluminescence of undoped β-Ga2O3 single crystals”, Solid State Communications, 120, (2001), pp.455-458.
[3.15] Bianca M. I. van der Zande, Marcel R. Bo¨hmer, Lambertus G. J. Fokkink, and Christian Scho¨nenberger, “Colloidal Dispersions of Gold Rods: Synthesis and Optical Properties”, Langmuir, 16, (2000), pp.451-458.
[3.16] P. B. Johnson, and R. W. Christy, “Optical-constants of Noble-Metals” Phy. Rev. B, 6, (1972), pp.4370-4379.
[3.17] Bo Liu, Mu Gu, and Xiaolin Liu, “Lattice dynamical, dielectric, and thermodynamic properties of β-Ga2O3 from first principles”, Appl. Phys. Lett., 91, (2007), pp.172102.
[3.18] A. Tao, F. Kim, and C. Hess, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy”, Nano lett., 3, (2003), pp.1229-1233.
[3.19] Rui-Long Zong, Ji Zhou, Qi Li, Bo Du, Bo Li, Ming Fu, Xi-Wei Qi, and Long-Tu Li, “Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina Membrane”, J. Phys. Chem. B, 108, (2004), pp.16713-16716.
[3.20] Rui-Long Zong, Ji Zhou, Bo Li, Ming Fu, Shi-Kao Shi, and Long-Tu Li, “Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide”, The Journal of Chemical Physics, 123, (2005), pp.094710.