簡易檢索 / 詳目顯示

研究生: 李宗燁
Li, Tsung-Yeh
論文名稱: 在后羿平台上以進階交流掃描為基礎的延遲測試與特徵描述
AC+ Scan Based Delay Testing and Characterization over HOY Platform
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 53
中文關鍵詞: 延遲測試交流掃描特徵描敘小型延遲錯誤
外文關鍵詞: Delay testing, characterization, AC scan, small delay defect
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程不斷的演進,越來越多的因素會造成製程偏移,使得電路中的延遲時間難以預測。再加上電路工作頻率不斷的提升,使得以往不具影響力的小型延遲錯誤,也開始對於電路的運作造成威脅,因此延遲測試在確保晶片品質的角色日益重要。在這篇論文中,我們提出了三個方法來進行延遲測試與特徵描述,並在后羿平台上實做我們所提出的技術。我們提出的第一個方法,提供了更有效率的方式去量測每一個測試向量的最大延遲時間,以對電路進行特徵描述,並可分析該晶片是否有小型延遲錯誤。實驗的結果顯示該方法可以有效的將測試時間減少81.8%。第二個方法是針對量產測試所設計。由於現在普遍採用的實速測試並不能有效的偵測到小型延遲錯誤。而測量每個測試向量的最大延遲時間以偵測小型延遲錯誤的方式又太花費時間,並不適合量產測試。因此我們提出了這個方法,除了可以有效的偵測到小型延遲錯誤,並同時提供有缺陷的晶片快速特徵描述,以幫助我們做進一步的處理。實驗的結果顯示,這個方法可以有效的判斷出哪些具有小型延遲錯誤的晶片,其瑕疵的嚴重性較高,有比較高的機率會在實際使用的時候造成錯誤。第三個方法是藉由進階交流掃描來從一個真實的晶片中粹取出波形。憑藉著后羿平台幾乎沒有限制的測試記憶體,我們可以儲存大量的資料來重建出晶片內部的波形,以幫助我們進行矽晶片偵錯。我們並進一步的在實做出來的晶片上展示該方法。


    Small delay defects, often escaping from traditional delay testing, could cause a device to function abnormally in the field. Therefore detecting these defects is often necessary in modern delay testing. To address this issue, we propose three test modes in a new methodology called AC+ scan, meaning that the resolution of traditional AC scan test can be enhanced by embedding an All-Digital Phase-Locked Loop (ADPLL) into a circuit under test (CUT). AC+ scan can be executed by a next-generation test platform, HOY platform. The first test mode of our AC+ scan provides a more efficient way to measure the longest path delay associated with each test pattern. Experimental result shows that this method could greatly reduce the test time by 81.8%. The second test mode is designed for volume production test. It could effectively detect small delay defects and provide fast characterization on those defective chips for further processing. This mode could be used to help predict which chips will be more likely to cause failure in the field. The third test mode is to extract the waveform of each flip-flop’s output in a real chip. This is made possible by taking advantage of the almost unlimited test memory on HOY test platform, so that we could easily store a great volume of data and reconstruct the waveform for post-silicon debug. We have successfully manufactured a Viterbi decoder chip with feature of AC+ scan inside to demonstrate its capability.

    Abstract 3 Content 6 List of Figures 8 List of Tables 10 Chapter 1 Introduction 11 1.1 Introduction 11 1.2 Thesis Organization 15 Chapter 2 Preliminaries 16 2.1 AC+ 16 2.2 HOY Platform 17 Chapter 3 Per-Pattern Delay Measurement 18 3.1 Flow of Per-Pattern Delay Measurement 18 3.2 Potential Loss of Accuracy 20 Chapter 4 Adaptive-Frequency Test 22 4.1 Test Frequencies of Adaptive-Frequency Test 23 4.1.1 Target Test Clock Period: 23 4.1.2 Contour Test Clock Period: 24 4.1.3 Middle Test Clock Period: 24 4.2 Three Categories of Chips 24 4.2.1 Passing chips: 24 4.2.2 Failing chips: 24 4.2.3 Marginal chips: 25 4.3 Flow of Adaptive-Frequency Test 25 4.4 Delay Score 26 4.5 Delay Unit 26 4.6 Calculation of Contour Test Clock Period 27 4.7 Calculation of Delay Score 27 4.8 Unreliability Score 30 4.9 Relation between Delay and Unreliability Score 31 4.10 Mixed Treatments 31 4.11 Justification for Discarding High Score Chips 32 Chapter 5 Waveform Extraction 34 Chapter 6 Fabricated Chip 36 Chapter 7 Experimental Results 37 7.1 Per-Pattern Delay Measurement 37 7.2 Adaptive-Frequency Test 38 7.3 Waveform Extraction 47 Chapter 8 Conclusion 49 Bibliography 50

    [1] H. Mahmoodi, S. Mukhopadhyay, K. Roy, “Estimation of Delay Variations due to Random-Dopant Fluctions in Nanoscale CMOS Circuits,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9, September 2005, pp. 1787-1796.
    [2] T.M. Mak, A. Krstic, K.T.T. Cheng, Li-C. Wang, “New Challenges in Delay Testing of Nanometer, Multigigahertz Designs,” IEEE Design & Test of Computers, vol. 21, no. 3, May-June 2004, pp. 241-247.
    [3] P. Nigh, and A. Gattiker “Test Method Evaluation Experiments & Data,” Proc. of International Test Conference, 2000, pp. 454-463.
    [4] X. Lin, R. Press, J. Rajski, P. Reuter, T. Rinderknecht, B. Swanson, and N. Tamarapalli, “High-frequency, at-speed scan testing,” IEEE Design & Test of Computers, vol. 20, no. 5, Sept.-Oct. 2003, pp. 17-25.
    [5] G.L. Smith, “Model for Delay Faults Based Upon Paths,” Proc. of International Test Conference, 1985, pp. 342-349.
    [6] J.A. Waicukauski, E. Lindbloom, B.K. Rosen, and V.S. Iyengar, “Transition Fault Simulation,” IEEE Design & Test of Computers, vol. 4, no. 2, Apr. 1987, pp. 32-38.
    [7] N. Ahmed, M. Tehranipoor, V. Jayaram, “Timing-Based Delay Test for Screening Small Delay Defects,” Proc. of Design Automation Conference, 2006, pp. 320-324.
    [8] X. Lin, K.H. Tsai, C. Wang, M. Kassab, J. Rajski, T. Kobayashi, R. Klingenberg, Y. Sato, S. Hamada, T. Aikyo, “Timing-Aware ATPG for High Quality At-speed Testing of Small Delay Defects,” Proc. of Asian Test Symposium, 2006, pp. 139-146.
    [9] M. Yilmaz, K. Chakrabarty, M. Tehranipoor, “Test-Pattern Grading and Pattern Selection for Small-Delay Defects,” Proc. of IEEE VLSI Test Symposium, 2008, pp. 233-239.
    [10] J. Xiong, V. Zolotov, C. Visweswariah, P. A. Habitz, “Optimal Margin Computation for At-Speed Test,” Proc. of Design Automation and Test in Europe, 2008, pp. 622-627.
    [11] J.-J. Liou, Li-C. Wang, K.-T. Cheng, J. Dworak, M.R. Mercer, R. Kapur, and T. W. Williams, “Enhancing Test Efficiency for Delay Fault Testing Using Multiple-Clocked Schemes,” Proc. of Design Automation Conference, 2002, pp. 371-374.
    [12] H. Yan and A. D. Singh, “Experiments in Detecting Delay Faults using Multiple Higher Frequency Clocks and Result from Neighboring Die,” Proc. of International Test Conference, 2003, pp. 105-111.
    [13] S. Mitra, E. Volkerink, E.J. McCluskey, S. Eichenberger, “Delay Defect Screening using Process Monitor Structures,” Proc. of IEEE VLSI Test Symposium, 2004, pp. 43-52.
    [14] R. Putman and P. Gawde, “Enhanced Timing-Based Transition Delay Testing for Small Delay Defects,” Proc. of IEEE VLSI Test Symposium, 2006, pp. 336-342.
    [15] R. Tayade, S. Sundereswaran, “Small-Delay Defect Detection in the Presence of Process Variations,” Microelectronics Journal, vol. 39, no. 8, August 2008, pp. 1093-1100.
    [16] K. S. Kim, S. Mitra, and P. G. Ryan, “Delay Defect Characteristics and Testing Strategies,” IEEE Design & Test of Computers, vol. 20, no. 5, Sept.-Oct. 2003, pp. 8-16.
    [17] J. Lee and E. J. McCluskey, “Failing Frequency Signature Analysis,” Proc. of International Test Conference, 2008, pp. 1-8.
    [18] S. Davidson, “Towards an Understanding of No Trouble Found Devices,” Proc. of IEEE VLSI Test Symposium, 2005, pp. 147-152.
    [19] S. Davidson, “Understanding NTF components from the field,” Proc. of International Test Conference, 2005, pp. 333-34.
    [20] M. Beck, O. Barondeau, M. Kaibel, F. Poehl, X. Lin, R. Press, “Logic Design for On-Chip Test Clock Generation-Implementation Details and Impact on Delay Test Quality,” Proc. of Design Automation and Test in Europe, 2005, pp. 56-61.
    [21] R. Press and J. Boyer, “Easily Implement PLL Clock Switching for At-Speed Test,” Chip Design Magazine, Feb.-Mar. 2006.
    [22] D. Wang, X. Fan, X. Fu, H. Liu, K. Wen, R. Li, H. Li, Y. Hu, X. Li, “The Design-for-Testability Features of a General Purpose Microprocessor,” Proc. of International Test Conference, 2007, pp. 1-9.
    [23] X. X. Fan, Y. Hu, and L. T. Wang, “An On-Chip Test Clock Control Scheme for Multi-Clock At-Speed Testing,” Proc. of Asian Test Symposium, 2007, pp. 341-346.
    [24] C.-W. Wu, C.-T. Huang, S.-Y. Huang, P.-C. Huang, T.-Y. Chang, and Y.-T. Hsing, “The HOY Tester – Can IC Testing Go Wireless?,” Proc. of International Symposium on VLSI Design, Automation, and Test, 2006, pp. 183-186.
    [25] B. Kruseman, A. K. Majhi, G. Gronthoud ,and S. Eichenberger, “On Hazard-free Patterns for Fine-delay Fault Testing,” Proc. of International Test Conference, 2004, pp. 213-222.
    [26] S. Menon, A. D. Singh, V. Agrawal, “Output Hazard-Free Transition Delay Fault Test Generation,” Proc. of IEEE VLSI Test Symposium, 2009, pp. 97-102.
    [27] K. Baker, G. Gronthoud, M. Lousberg, I. Schanstra, and C. Hawkins, “Defect-Based Delay Testing of Resistive Vias-Contacts, A Critical Evaluation,” Proc. of International Test Conference, 1999, pp. 467-476.
    [28] T.W. Williams, R.H. Dennard, R. Kapur, M.R. Mercer ,and W. Maly, “Iddq Test: Sensitivity Analysis of Scaling,” Proc. of International Test Conference, 1996, pp. 786-792.
    [29] J. Gao, Y. Han, X. Li, “A New Post-Silicon Debug Approach Based on Suspect Window,” Proc. of IEEE VLSI Test Symposium, 2009, pp. 85-90.
    [30] D. Josephson and B. Gottlieb, “The Crazy Mixed up World of Silicon Debug,” Proc. of Custom Integrated Circuits Conference, 2004, pp. 665-670.
    [31] D. Josephson, “The good, the bad, and the ugly of silicon debug,” Proc. of Design Automation Conference, 2006, pp. 3-6
    [32] CIC Referenced Flow for Cell-based IC Design, Technical Report, CIC-DSD-RD-08-01, V1.0 National Chip Implementation Center, Hsinchu, Taiwan, 2008.
    [33] H.-J. Hsu, C.-C. Tu, S.-Y. Huang, “Built-In Speed Grading with a Process-Tolerant ADPLL,” Proc. of Asian Test Symposium, 2007, pp. 384-389.
    [34] C.-W. Tzeng, C.-Y. Lin, S.-Y. Huang, C.-T. Huang, J.-J. Liou, H.-P. Ma, P.-C. Huang, and C.-W. Wu, “iScan: Indirect-Access Scan Test over HOY Test Platform,” Proc. of International Symposium on VLSI Design, Automation, and Test, 2009, pp. 60-63.
    [35] Synopsys Inc., “User Manuals for SYNOPSYS Toolset Version 2007.06,” Synopsys, Inc., 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE