簡易檢索 / 詳目顯示

研究生: 潘瑋強
Pan, Wei-Chiang
論文名稱: Minimizing Jitter in Advanced CMOS Circuits
電路在先進製程中的信號抖動及減低方法
指導教授: 張彌彰
Chang, Mi-Chang
口試委員: 洪浩喬
張克正
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 74
中文關鍵詞: 信號抖動隨機通信信號雜訊緩衝器
外文關鍵詞: Jitter, RTS, Noise, Buffer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • With the development of process technology, a lot of circuits can be integrated on chip. For digital circuit, clock-path mismatch will become an important issue. In order to improve the difference of wire delay, buffers inserted into the clock path aim to balance the path delay. Of course buffers cannot introduce additional jitter. In this thesis, a low jitter buffer was developed and it can reduce the jitter effectively. And in order to measure and verify the buffer on silicon, a full test chip was developed to compensate for I/O cell and loading delays for the most accurate timing measurement. This cell was also characterized to generate liberty file such that it can be included into the standard cell library for general usage. A good correlation between simulations and measurements was obtained.
      In addition, non-ideal effect becomes more obvious when the device size decreases gradually. Recent studies showed that random telegraph signal (RTS) noise is strongly correlated with excess leakage current in sub-micrometer MOS transistors. For circuit designers, the impact of this noise current cannot be ignored. This thesis also studies the time-domain jitter caused by RTS noise. A model, which describes the emission and capture of electrons in device channel region based on Poisson statistic, was developed and implemented in HSPICE. This model can be used to simulate circuits with RTS noise. Using this model, we build higher level expression for basic gate jitter behavior, and the results are comparable to simulated data.


    隨著製程技術的演進,許多電路都可被整合到晶片內.而對於數位電路來說,時脈路徑的不匹配將會是一個重要考量.因此,為了改善導線延遲上的差異,許多緩衝器可被嵌入至時脈路徑中,以平衡路徑上的延遲問題.而這些被嵌入的緩衝器本身也不應該產生額外的信號抖動.本篇論文提出一個低信號抖動的緩衝器,可有效的降低本身信號抖動的問題.並且為了量測以及驗證實際芯片上緩衝器的效能,另外設計一組測試晶片,可抵銷輸出入埠與負載對芯片所造成的影響及延遲,以達到更精確的量測數據.另外,也對於此緩衝器做一特徵化並置入於標準元件庫內以方便使用.而所有的實際量測數據與模擬分析上的結果是相符的.
    另外,隨著元件尺寸不斷的下降,非理想效應也變得越來越顯著.近年來許多的研究指出,次微米電晶體中所產生的漏電流與隨機電信訊號雜訊有著強烈的關係.而對於電路設計者來說,這樣的雜訊電流更是不能被忽略.本篇論文也詳細研究了受到隨機電信訊號雜訊所產生於時間域上的信號抖動.並且建構其模型,使得此效應可被用於Spice軟體上模擬分析.而此模型主要是根據Poisson統計學理論來描述元件通道內電子被捕獲及釋放的行為.並且利用此模型得出其數學式,可被用來解釋邏輯閘上的信號抖動,並且將其推導之結果與實際模擬數據做一詳細探討.

    Content 摘要 ii 誌謝 iii Abstract v Content vi List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Motivations 1 1.2 Organization of the Thesis 2 Chapter 2 Low Jitter Buffer 3 2.1 Jitter and Noise 3 2.2 Sampling Issue 3 2.3 Dominating Noises 5 2.4 Fast Approximation of Jitter 8 2.5 Transistor width Optimization 12 2.6 Low Jitter Buffer Implementation 15 2.7 Comparisons 16 Chapter 3 Test Circuit Implementation 18 3.1 Circuit Structure Design 18 3.2 Input Frequency Limitation 21 3.3 Cell Delay Measurements 22 3.4 Complete Test Circuit 23 3.4.1 De-Multiplexer 23 3.4.2 Multiplexer 24 3.4.3 Signal with I/O Cell 25 3.4.4 Selecting the Number of Stages 25 3.4.5 Test Circuit Pre-Simulation 26 3.5 Floor Plan and Layout View 28 3.6 Post-Simulation Results 30 3.7 Chip Measurement 31 3.7.1 Measurement Procedure 31 3.7.2 Printed Circuit Board 32 3.7.3 Test Equipment 33 3.7.4 Measurement Results 34 Chapter 4 Random Telegraph Signal Noise 47 4.1 Introduction 47 4.2 Current-Based Model 48 4.2.1 Capture and Emission Times 51 4.3 Multiple Trap 53 4.4 Voltage-Based Model 54 Chapter 5 Jitter Due to RTS Noise 58 5.1 MOSFET Structure in Medici 58 5.2 RTS Trap Simulations 61 5.3 RTS Noise Current Trend 62 5.4 Jitter due to RTS Noise 64 5.5 Ratio between Jitter and Inverter Delay 65 5.6 Transient RTS Noise 67 Chapter 6 Conclusions and Future Work 71 Reference 73

    Reference
    [1] G. E. Moore, "No exponential is forever: but "Forever" can be delayed! [semiconductor industry]," Digest of Technical Papers. ISSCC. 2003 IEEE International Solid-State Circuits Conference, Vol. 1, pp. 20-23, 2003.
    [2] E. Simoen, B. Dierickx, C. L. Claeys and G. J. Declerck, "Explaining the amplitude of RTS noise in submicrometer MOSFETs," IEEE Transactions on Electron Devices, Vol. 39, no. 2, pp. 422-429, 1992.
    [3] J. Pavelka, J. Sikula, M. Tacano and M. Toita, "Amplitude of RTS noise in MOSFETs," 2009 International Conference on Microelectronics (ICM), pp. 346-349, 19-22 Dec., 2009.
    [4] C. L. Alexander, A. R. Brown, J. R. Watling and A. Asenov, "Impact of single charge trapping in nano-MOSFETs-electrostatics versus transport effects," IEEE Transactions on Nanotechnology, Vol. 4, no. 3, pp. 339-344, 2005.
    [5] N. H. Hamid, A. F. Murray and S. Roy, "Time-Domain Modeling of Low-Frequency Noise in Deep-Submicrometer MOSFET," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 55, no. 1, pp. 245-257, 2008.
    [6] C. Leyris, S. Pilorget, M. Marin, M. Minondo and H. Jaouen, "Random telegraph signal noise SPICE modeling for circuit simulators," ESSDERC 2007. 37th European Solid State Device Research Conference, pp. 187-190, 11-13 Sept., 2007.
    [7] X. Chao, F. Barber, K. Laker and J. Van der Spiegel, "Analysis of clock buffer phase noise," ISCAS 2002. IEEE International Symposium on Circuits and Systems, 2002, Vol. 5, pp. 657-660, 2002, 2002.
    [8] M. Brownlee, P. K. Hanumolu, M. Un-Ku and K. Mayaram, "The effect of power supply noise on ring oscillator phase noise," NEWCAS 2004 The 2nd Annual IEEE Northeast Workshop on Circuits and Systems, 2004, pp. 225-228, 20-23 June 2004, 2004.
    [9] A. A. Abidi, "Phase Noise and Jitter in CMOS Ring Oscillators," IEEE Journal of Solid-State Circuits, Vol. 41, no. 8, pp. 1803-1816, 2006.
    [10] A. A. Abidi and S. Samadian, "Phase noise in inverter-based & differential CMOS ring oscillators," Custom Integrated Circuits Conference, 2005. Proceedings of the IEEE 2005, pp. 457-460, 18-21 Sept. 2005, 2005.
    [11] J. S. Kolhatkar, L. K. J. Vandamme, C. Salm and H. Wallinga, "Separation of random telegraph signals from 1/f noise in MOSFETs under constant and switched bias conditions," ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003, pp. 549-552, 16-18 Sept. 2003, 2003.

    [12] N. Zanolla, D. Siprak, P. Baumgartner, E. Sangiorgi and C. Fiegna, "Measurement and simulation of gate voltage dependence of RTS emission and capture time constants in MOSFETs," ULIS 2008. 9th International Conference on Ultimate Integration of Silicon, 2008, pp. 137-140, 12-14 March 2008, 2008.
    [13] A. P. van der Wel, E. A. M. Klumperink, L. K. J. Vandamme and B. Nauta, "Modeling random telegraph noise under switched bias conditions using cyclostationary RTS noise," IEEE Transactions on Electron Devices, Vol. 50, no. 5, pp. 1378-1384, 2003.
    [14] D. Pogany, E. Gornik, M. Stecher and W. Werner, "Random telegraph noise and leakage current in smart power technology DMOS devices," Microelectronics Reliability, Vol. 40, no. 11, pp. 1887-1890, 2000.
    [15] L. Brusamarello, G. I. Wirth and R. da Silva, "Statistical RTS model for digital circuits," Microelectronics Reliability, Vol. 49, no. 9-11, pp. 1064-1069.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE