研究生: |
龔欣玫 Gong, Shin-Mei |
---|---|
論文名稱: |
利用開放式直流還原系統調控製程參數合成高效能奈米陽極觸媒應用於μDMFC High Efficient Nanocatalyst Synthesis Using Open-Loop Flux Reduction System with Process Parameters Regulation in Micro DMFC |
指導教授: |
曾繁根
Tseng, Fan-Gang, |
口試委員: |
曾繁根
Tseng, Fan-Gang 葉宗洸 Yeh, Tsung-Kuang 吳樸偉 Wu, Pu-Wei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 直接甲醇燃料電池 、觸媒活性 、奈米碳管 、開放式直流化學還原系統 、PtRu |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直接甲醇燃料電池(Direct Methanol Fuel Cell,DMFC)使用甲醇燃料,有高能量轉換效能,低污染,且可在低溫環境下操作等優點,與使用氫氣為燃料的質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell,PEMFC)做比較,其燃料儲存較容易、室溫下即可操作且運作系統精簡。未來在攜帶式3C產品上的應用有著無限潛力。
本實驗使用平面Si為基材,鍍上Ni/Al/Ti薄膜做為碳管成長觸媒/電子傳導/黏著層。接著使用Thermal CVD成長奈米碳管增加乘載觸媒之表面積。成長後的碳管進行親水化處理,再利用本實驗室自製「開放式直流還原系統」乙二醇當作還原劑可在常壓下達到高溫觸媒還原[1]。然而,由於在此觸媒還原系統中溶液體積和反應溫度會隨著溶液蒸發與冷凝而改變,其提升沸點機制和傳統reflux系統不同,因此必須更進一步找出針對此自製觸媒還原系統最佳反應溫度與觸媒性能的關係。實驗結果顯示出能在較低還原溫度(130℃)有更佳的觸媒性能表現。後續利用相同方式找出純Ru還原最佳溫度參數(160℃),最後嘗試還原PtRu。
目前研究最佳陽極觸媒製程為Ru(160℃)→Pt(130℃)→Pt:Ru=0.5:1(160℃)分三步順序還原PtRu。其成果CO毒化抑制能力較純Pt提升55% (Ipm/Ipco=0.83→1.29),而質量活性較純Pt提升46% (506→739A/g),已達近期化學還原文獻兩倍以上。未來將繼續進行PtRu二元合金觸媒製備,實際運用於本實驗室微型直接甲醇燃料電池全電池組裝研究。
Direct methanol fuel cell (DMFC) uses methanol as fuel, mainly because it has high energy conversion efficiency, low pollution, and it can operate at low temperature. Compared to proton exchange membrane fuel cell (PEMFC) using hydrogen gas as the anode fuel, DMFC has some advantages such as the safety of fuel storage, operation at room temperature, and so on. Therefore, DMFCs have potential applications for portable electronics.
In this study, we use Si substrate, coated with Ni/Al/Ti film as carbon nanotube growth catalyst / electron transfer / adhesion layer. Then use the Thermal CVD growth carbon nanotubes to increase the surface area. After the growth of carbon tubes we use hydrophilic treatment, then use "Open-Loop Flux Chemical Reduction System" our lab design for Pt catalytic reduction. However, As the solution volume and temperature in the OLFCRS change with the solution evaporation/condensation process, the mechanism for enhancing the boiling point will be different from the traditional reflux system, so it is imperative to optimize the reaction temperature of Pt reduction in the OLFCRS. The results showed a lower reduction temperature (130℃) has better performance. Then we use the same method to find the best temperature reduction parameter of pure Ru (160℃). Finally we design PtRu reduction. Currently the best anode catalyst of the process is Ru (160℃)→Pt (130℃)→Pt: Ru = 0.5:1 (160℃) three steps. The results of CO poisoning enhance the inhibition 55% (Ipm/Ipco= 0.83→1.29) with pure Pt, and improve the quality of mass activity 46% (506→739A/g) with pure Pt. The result is double with the recent literature of chemical reduction. We will continue to research PtRu binary alloy catalyst preparation. Then practical application of the laboratory micro direct methanol fuel cell assembly of the whole cells.
[1] Y. S. Wu et al., “High efficient nanocatalysts synthesis by a semi-reflux chemical reduction system”, Proceedings of the 2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, pp. 702-705, January 20-23, 2010
[2] T. J. Yen, N. Fang, X. Zhang, G. Q. Lu, and C. Y. Wang, Appl. Phys. Lett., Vol. 83, No. 19, pp. 4056-4058, 2003.
[3] G. Q. Lu, C. Y. Wang, T. J. Yen, and X. Zhang, Electrochim. Acta , Vol. 49, pp.821-828, 2004.
[4] A. Lima, C. Coutanceau, J. -M. Leger, C. Lamy, J. Appl. Electrochem., Vol. 31, pp. 379-386, 2001.
[5] F. Gloaguen, J. M. Leger, C. Lamy, J. Appl. Electrochem., Vol. 27, pp. 1052-1060.
[6] John Wiley & Sons, Fuel Cell Systems Explained , Second Edition James Larminie and Andrew Dicks. 2003Ltd ISBN : 0-470-84857-X
[7] 黃鎮江, 燃料電池: 全華科技圖書股份有限公司, 2005.
[8] J. Larminie, A. Dicks, Fuel Cell Systems Explained, John Wiley and Sons Ltd., 2003.
[9] T. R. Ralph, M. P. Hogarth, Platinum Metals Rev., vol.3, pp. 46, 2002
[10] Y Takasu, T Fujiwara, Y Murakami, K Sasaki, M Oguri, T Asaki, and W Sugimoto, Journal of The Electrochemical Society, vol.147, pp. 4421, 2000
[11] N. M. Markovic, P. N. Ross, Surface Science Reports, vol.45, pp. 121, 2002
[12] Y Shimazaki, Y Kobayashi, S Yamada, T Miwa, M Konno, Journal of Colloid and Interface Science, vol.292, pp. 122, 2005
[13] G. S. Chai, S. B. Yoon, J. S. Yu, J. H. Choi, Y. E. Sung., “Ordered Porous Carbons with Tunable Pore Sizes as Catalyst Supports in Direct Methanol Fuel Cell”, J. Phys. Chem. B (2004), 108 , 7074-7079
[14] M. A. Scibioh, I. H. Oh, T. H. Lim, S. A. Hong, H. Y. Ha, “Investigation of various ionomer-coated carbon supports for direct methanol fuel cell applications”, Applied Catalysis B: Environmental 77 (2008) 373–385.
[15] S. Kim, H. J. Sohn, S. J. Park, “Preparation and characterization of carbon-related materials supports for catalysts of direct methanol fuel cells”, Current Applied Physics 10 (2010) 1142–1147
[16] J.R.C. Salgado, F. Alcaide, G. Alvarez, L. Calvillo, M.J. Lazaro, E. Pastor, “Pt–Ru electrocatalysts supported on ordered mesoporous carbon for direct methanol fuel cell”, Journal of Power Sources 195 (2010) 4022–4029
[17] M. C. Tsai et al., “A catalytic gas diffusion layer for improving the efficiency of a direct methanol fuel cell,” Electrochemistry Communications, vol. 9, pp. 2299-2303, 2007.
[18] S. K. Wang, F. G. Tseng, T. K. Yeh, and C. C. Chieng, Journal of Power Sources, vol. 167, pp. 413-419, May 2007
[19] Z. B. He, J. H. Chen, D. Y. Liu, H. Tang, W. Deng, and W. F. Kuang, Materials Chemistry and Physics, vol. 85, pp. 396-401, Jun 2004.
[20] N. Jha, A. L. Mohana, M. M. Shaijumon, N. Rajalakshmi, S. Ramaprabhu, International Journal of Hydrogen Energy 33 (2008)427-433
[21] Y. Liang, H. Zhang, B. Yi, Z. Zhang, Z. Tan, Carbon 43 (2005) 3144–3152
[22] 王鈞顯,「利用半開放式化學還原系統製備觸媒於奈米碳管-應用於微型直接甲醇燃料電池」, 國立清華大學碩士論文, 2009
[23] X. Wang, and I. M. Hsing, Electrochimica Acta, vol. 47, pp. 2981, 2002
[24] 賴羿如, 「利用奈米碳管與鉑釕化學沉積法製備直接甲醇燃料電池陽極觸媒」, 國立清華大學碩士論文, 2006
[25] C. Bock et al., “Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism,” Journal of the American Chemical Society, vol. 126, pp. 8028-8037, 2004.
[26] C. K. Rhee et al., “Size Effect of Pt Nanoparticle on Catalytic Activity in Oxidation of Methanol and Formic Acid: Comparison to Pt(111), Pt(100), and Polycrystalline Pt Electrodes,” Langmuir vol.25(12),pp.7140–7147,2009.
[27] F.J. Liu et al., “Effect of deposition sequence of platinum and ruthenium particles into nanofibrous network of polyaniline–poly(styrene sulfonic acid) on electrocatalytic oxidation of methanol,” Synthetic Metals, vol.158, pp.603–609, 2008.
[28] J. Larminie et al. , Fuel Cell Systems Explained, 2nd Edition, John Wiley & Sons, Inc., England, 2003.
[29] S. Jiang et al., “Direct immobilization of Pt–Ru alloy nanoparticles on nitrogen-doped carbon nanotubes with superior electrocatalytic performance,” Journal of Power Sources, vol. 195, pp.7578-7582, 2010.
[30] M. C. Tsai et al., “Methanol oxidation efficiencies on carbon-nanotubesupported platinum and platinumeruthenium nanoparticles prepared by pulsed electrodeposition,” International Journal of hydrogen energy, vol. 36, pp.8261-8266, 2011.
[31] 江朝源,「陽極使用二元合金觸媒之直接甲醇燃料電池在不同製備條件下的電化學特性分析」, 國立清華大學碩士論文, 2005
[32] M. Watanabe et al., “Preparation of highly dispersed Pt-Ru alloy clusters and the activity for the electrooxidation of methanol,” Journal of Electroanalytic Chemistry, vol. 229, pp.395-406, 1987.
[33] X. Wang et al., “Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells,” Electrochimica Acta, vol. 47, pp. 2981-2987, 2002.