簡易檢索 / 詳目顯示

研究生: 許恩瑋
Hsu, En-Wei
論文名稱: 具無位置感測控制及車對電網/電網對車/車對車操作功能之電動車內置磁石永磁同步馬達驅動系統
AN EV IPMSM DRIVE WITH POSITION SENSORLESS CONTROL AND V2G/G2V/V2V OPERATION CAPABILITIES
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 徐國鎧
Shyu, Kuo-Kai
曾萬存
Tseng, Wan-Tsun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 132
中文關鍵詞: 電動車內置磁石式永磁同步馬達弱磁無位置感測高頻注入蓄電池介面轉換器CLLC諧振轉換器切換式整流器變頻器電網對車車對電網車對車
外文關鍵詞: EV, IPMSM, field-weakening, position sensorless, HFI, battery, interface converter, CLLC resonant converter, switch-mode rectifier, inverter, G2V, V2G, V2V
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一具無位置感測控制和車對電網/電網對車/車對車操作功能之電動車內置磁石式永磁同步馬達驅動系統。馬達驅動系統之直流鏈電壓,由蓄電池經交錯式雙向升/降壓介面轉換器建立,兩臂交錯之轉換器具故障容錯能力及減小之電流紋波。經由合宜之控制,所建驅動系統於廣速度範圍具良好驅控特性,以及正常之再生煞車操作。
    首先,研製標準馬達驅動系統。將妥當設計之功率元件驅動電路應用於碳化矽變頻器,並設計馬達驅動系統必要之感測與控制方案,由實測結果驗證其驅動性能。接著,探究換相移位及變動直流鏈電壓策略對系統效率提升之有效性。此外,建構並比較評估弱磁控制與弦波高頻注入無位置感測電動車馬達驅動系統。前者可在蓄電池介面轉換器發生嚴重故障時,使馬達維持正常運作之轉速;後者可在位置感測器發生故障時,迅速無縫地由標準控制切換為無位置感測控制,使馬達驅動系統維持正常運轉。同時,兩臂交錯之蓄電池介面轉換器亦提供故障容錯能力,以提升系統整體之可靠性。
    當電動車於閒置時,使用馬達驅動系統既有元件可執行雙向隔離併網操作。電氣隔離係應用全橋式CLLC諧振轉換器達成。在電網對車模式中,馬達驅動器操作成切換式整流器,由三相市電對蓄電池充電。在車對電網模式中,馬達驅動器操作成變頻器,由蓄電池將能量送回三相市電。另外,車對車模式可提供無充電樁時可緊急充電之備援方案。供應側蓄電池藉由介面轉換器建立直流鏈,連接至接收側直流鏈後透過CLLC諧振轉換器對蓄電池充電。


    This thesis presents an electric vehicle (EV) interior permanent-magnet synchronous motor (IPMSM) drive with position sensorless control and vehicle-to-gird (V2G)/ grid-to-vehicle (G2V)/vehicle-to-vehicle (V2V) operation capabilities. The motor drive boosted and varied DC-link voltage is established by the battery via an interleaved bidirectional boost/buck interface converter, which consists of two cells to possess fault- tolerant capability and reduced current ripple. Through proper control, good driving performance over wide speed range and normal regenerative braking are achieved.
    First, the standard EV IPMSM drive is designed and implemented. The SiC-based inverter with properly designed gate driver is established. And the necessary sensing schemes and control schemes for the motor drive are designed. Its driving performance is verified experimentally. Next, the effectiveness of adjustable DC-link voltage and commutation advanced shift on the system efficiency enhancement are also experimentally explored in detail. Furthermore, the field-weakening control and sine-wave high-frequency injection (HFI) position sensorless EV IPMSM drive are comparatively evaluated. The former can keep the normal running of motor in high speed when fatal error occurs in battery interface converter; the later possesses immediate and seamless transfer from the standard to the position sensorless controlled EV IPMSM drive can be achieved as the position sensor failure is detected. In addition, the interleaved battery interface converter further provides the fault-tolerance to enhance the system reliability.
    During the idle mode, the embedded motor drive components in the EV enable bidirectional grid-connected operations. A full-bridge CLLC resonant converter is employed to achieve galvanic isolation. In G2V operation, the motor drive is operated as a switch-mode rectifier (SMR) and the battery can be charged from the three-phase mains. In V2G operations, the motor drive is operated as an inverter to send the energy from battery to three-phase mains. Moreover, V2V operation is developed as a backup solution for urgent situations. The DC-link voltage is established by the battery interface converter in the provided EV, and it is connected to the accepted EV for battery charging using the CLLC resonant converter.

    ABSTRACT i ACKNOWLEDGEMENT ii LIST OF CONTENTS iii LIST OF FIGURES vi LIST OF TABLES xv LIST OF SYMBOLS xvi LIST OF ABBREVIATIONS xxvi CHAPTER 1 INTRODUCTION 1 CHAPTER 2 BASIC TECHNOLOGIES RELATED TO ELECTRIC VEHICLES 6 2.1 Introduction 6 2.2 Classifications and Power Control Units of Electric Vehicles 6 2.3 Some Key Controls of an EV IPMSM Drive 9 2.4 Introduction to PMSMs 9 2.4.1 Motor Structures 9 2.4.2 Voltage and Torque Equations 11 2.4.3 Parameter Estimation of the Employed PMSM 13 2.4.4 Commutation Shift 16 2.5 Energy Storage Devices for EV Drives 16 2.6 Interface Converters 18 2.6.1 DC/DC Converters 18 2.6.2 Switch-mode Rectifiers and Inverters 20 2.7 G2V/V2G/V2H Operations and EV Chargers 22 CHAPTER 3 BATTERY POWERED ELECTRIC VEHICLE IPMSM DRIVE 25 3.1 Introduction 25 3.2 System Configuration and Establishment of the Developed EV IPMSM Drive 25 3.2.1 System Configuration 25 3.2.2 Motor Drive Establishment 27 3.3 EV IPMSM Drive with Fixed DC-link Voltage 40 3.3.1 Control Schemes 40 3.3.2 Measured Results 44 3.4 Battery Interface DC/DC Converter 54 3.4.1 Power Circuit 54 3.4.2 Control Schemes 56 3.4.3 Performance Evaluation 62 3.5 Evaluation of the Battery Powered EV IPMSM Drive 66 3.5.1 Programmed Speed Pattern Evaluation 66 3.5.2 Effectiveness of Adjustable DC-link Voltage 66 CHAPTER 4 FIELD WEAKENING AND POSITION SENSORLESS CONTROLS 73 4.1 Introduction 73 4.2 Field Weakening Control of IPMSM 73 4.2.1 Theoretic Basics of Field Weakening Control 73 4.2.2 Control Schemes 75 4.2.3 Measured Results 76 4.3 Sine-wave HFI Position Sensorless EV IPMSM Drive 78 4.3.1 High-frequency Injection Characteristics 78 4.3.2 Comparative Current Characteristics of D-axis and Q-axis Injections 79 4.3.3 D-axis Injected Sine-wave HFI Position Sensorless EV IPMSM Drive 81 4.4 Performance Evaluation for Sine-wave HFI Position Sensorless EV IPMSM Drives 85 4.5 Fault-tolerant Operation Under Position Sensor Failure 93 4.5.1 Introduction 93 4.5.2 Fault Diagnosis Operation 93 4.5.3 Measured Results 93 CHAPTER 5 G2V/V2G/V2V OPERATIONS OF ELECTRIC VEHICLE WITH GALVANIC ISOLATION 97 5.1 Introduction 97 5.2 Bidirectional CLLC Resonant Converter 97 5.2.1 Circuit Operation 97 5.2.2 Design of System Components 103 5.2.3 Control Schemes 106 5.2.4 Measured Results 107 5.3 Three-phase G2V/V2G Operations 110 5.3.1 Power Circuit 110 5.3.2 Control Schemes 110 5.3.3 Measured Results 115 5.4 V2V Operations 120 5.4.1 System Configuration 120 5.4.2 Measured Results 121 CHAPTER 6 CONCLUSIONS 124 REFERENCES 125

    [1] C. C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 704-718, 2007.
    [2] A. Emadi, Y. J. Lee, and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 2237-2245, 2008.
    [3] A. M. Lulhe and T. N. Date, “A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV),” in Proc. IEEE ICCICCT, 2015.
    [4] I. Husain et al., “Electric drive technology trends, challenges, and opportunities for future electric vehicles,” Proc. IEEE, vol. 109, no. 6, pp. 1039-1059, June 2021.
    [5] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
    [6] K. Rajashekara, “Present status and future trends in electric vehicle propulsion technologies,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 1, pp. 3-10, 2013.
    [7] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, 2014, pp. 1874-1879.
    [8] W. Wang, X. Chen and J. Wang, “Motor/generator applications in electrified vehicle chassis-a survey,” IEEE Trans. Transport. Electrific., vol. 5, no. 3, pp. 584-601, 2019.
    [9] K. Zhou and D. Wang, “Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 186–196, 2002.
    [10] Ó. López et al., “Space-vector PWM with common-mode voltage elimination for multiphase drives,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8151-8161, 2016.
    [11] K. Sun, Q. Wei, L. Huang and K. Matsuse, “An overmodulation method for PWM- inverter-fed IPMSM drive with single current sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3395–3404, 2010.
    [12] C. Liu, Z. Zhang, Y. Liu, Y. Si, M. Wang, and Q. Lei, “A universal block of series- connected SiC MOSFETs using current-source gate driver,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 10, no. 3, pp. 3066-3086, 2022.
    [13] A. Anurag, S. Acharya, Y. Prabowo, G. Gohil, and S. Bhattacharya, “Design considerations and development of an innovative gate driver for medium-voltage power devices with high dv/dt,” IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5256-5267, 2019.
    [14] S. Zhao, X. Zhao, Y. Wei, Y. Zhao, and H. A. Mantooth, “A review of switching slew rate control for silicon carbide devices using active gate drivers,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 4, pp. 4096-4114, 2021.
    [15] S. Ji, S. Zheng, F. Wang, and L. M. Tolbert, “Temperature-dependent characterization, modeling, and switching speed-limitation analysis of third-generation 10-kV SiC MOSFET, “ IEEE Trans. Power Electron., vol. 33, no. 5, pp. 4317-4327, 2018.
    [16] J. Y. Lee, S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, “Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1303-1306, 2006.
    [17] D. Q. Dang, M. S. Rafaq, H. H. Choi and J. W. Jung, “Online parameter estimation technique for adaptive control applications of interior PM synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1438-1449, 2016.
    [18] M. S. Rafaq and J. Jung, “A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4747-4758, 2020.
    [19] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
    [20] F. Morel, X. Lin-Shi, J. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
    [21] M. C. Chou, C. M. Liaw, S. B. Chien, F. H. Shieh, J. R. Tsai, and H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp Electron. Syst., vol. 47, no. 1, pp. 58-74, 2011.
    [22] Y. Inoue, S. Morimoto and M. Sanada, “Examination and linearization of torque control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 159–166, 2010.
    [23] T. Sun, J. Wang and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036-5045, 2015.
    [24] D. Mohan, X. Zhang and G. H. B. Foo, “Generalized DTC strategy for multilevel inverter fed IPMSMs with constant inverter switching frequency and reduced torque ripples,” IEEE Trans. Energy Convers., vol. 32, no. 3, pp. 1031-1041, 2017.
    [25] S. Morimoto, M. Sanada and Y. Takeda, “Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 30, no. 6, pp. 1632-1637, 1994.
    [26] S. M. Sue and C. T. Pan, “Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 340-347, 2008.
    [27] C. M. Espinar, D. H. Peris, G. Gross, M. L. Masachs, and D. M. Miracle, “Maximum torque per voltage flux-weakening strategy with speed limiter for PMSM drives,” IEEE Trans. Ind. Electron., vol. 68, no. 10, pp. 9254-9264, 2021.
    [28] Z. Huang, C. Lin and J. Xing, ‘‘A parameter-independent optimal field-weakening control strategy of IPMSM for electric vehicles over full speed range,’’ IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4659-4671, 2021.
    [29] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, 2016.
    [30] S. Tenner, S. Gunther and W. Hofmann, “Loss minimization of electric drive systems using a dc/dc converter and an optimized battery voltage in automotive applications,” in Proc. IEEE VPPC, 2011, pp. 1-7.
    [31] S. Xiao, X. Gu, Z. Wang, T. Shi, and C. Xia, “A novel variable DC-link voltage control method for PMSM driven by a quasi-Z-source inverter,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3878-3890, 2020.
    [32] F. Nadeem, S. S. Hussain, P. K. Tiwari, A. K. Goswami, and T. S. Ustun, “Comparative review of energy storage systems, their roles, and impacts on future power systems,” IEEE Access, vol. 7, pp. 4555–4585, 2018.
    [33] M. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof, and P. J. Ker, “State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: issues and recommendations,” IEEE Access, vol. 6, pp. 19362-19378, 2018.
    [34] Y. Shang, C. Zhu, Y. Fu, and C. C. Mi, “An integrated heater equalizer for lithium-ion batteries of electric vehicles,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4398-4405, 2019.
    Battery Management System
    [35] A. Manenti, A. Abba, A. Merati, S. M. Savaresi, and A. Geraci, “A new BMS architecture based on cell redundancy,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4314-4322, 2011.
    [36] K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-management system (BMS) and SOC development for electrical vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 76-88, 2011.
    [37] S. Sul, Y. Kwon and Y. Lee, “Sensorless control of IPMSM for last 10 years and next 5 years,” CES Trans. Electr. Mach. Syst., vol. 1, no. 2, pp. 91–99, 2017.
    [38] G. Wang, M. Valla and J. Solsona, “Position sensorless permanent magnet synchronous machine drives-a review,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5830–5842, 2020.
    [39] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, 2011.
    [40] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, April 2006.
    [41] M. S. Rafaq, F. Mwasilu, J. Kim, H. H. Choi, and J. Jung, “Online parameter identification for model-based sensorless control of interior permanent magnet synchronous machine,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4631-4643, 2017.
    [42] J. Jang, J. Ha, M. Ohto, K. Ide, and S.K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
    [43] S. Kim, J. I. Ha and S. K. Sul, “PWM switching frequency signal injection sensorless method in IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 5, 2012
    [44] G. Wang, R. Yang and D. Xu, “DSP-based control of sensorless IPMSM drives for wide- speed-range operation,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 720–727, 2013.
    [45] D. D. Reigosa, D. Fernandez, H. Yoshida, T. Kato, and F. Briz, “Permanent-magnet temperature estimation in PMSMs using pulsating high-frequency current injection,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3159–3168, 2015.
    [46] W. Qian, X. Zhang, F. Jin, H. Bai, D. Lu, and B. Cheng, “Using high-control-bandwidth FPGA and SiC inverters to enhance high-frequency injection sensorless control in interior permanent magnet synchronous machine,” IEEE Access, vol. 6, pp. 42454-42466, 2018.
    [47] N. C. Park and S. H. Kim, “Simple sensorless algorithm for interior permanent-magnet synchronous motors based on high-frequency voltage injection method,” IET Electr. Power Appl., vol. 8, no. 2, pp. 68-75, 2014.
    [48] Y. Zhao, Z. Zhang, C. Ma, W. Qiao, and L. Qu, “Sensorless control of surface-mounted permanent-magnet synchronous machines for low-speed operation based on high-frequency square-wave voltage injection,” in Proc. IEEE IAS, 2013, pp. 1-8.
    [49] C. Hwang, Y. Lee and S. Sul, “Analysis on position estimation error in position-sensorless operation of IPMSM using pulsating square wave signal injection,” IEEE Trans. Ind. Appl., vol. 55, no. 1, pp. 458–470, 2019.
    [50] A. Varatharajan, G. Pellegrino, E. Armando, and M. Hinkkanen, “Sensorless synchronous motor drives: a review of flux observer-based position estimation schemes using the projection vector framework,” IEEE Trans. Power Electron, vol. 36, no. 7, pp. 8171-8180, 2021.
    [51] Y. Zhao, W. Qiao and L. Wu, “Position extraction from a discrete sliding-mode observer for sensorless control of IPMSMs,” in Proc. IEEE ISIE, pp.1-7, 2012.
    [52] F. Chen, X. Jiang, X. Ding, and C. Lin, “FPGA-based sensorless PMSM speed control using adaptive sliding mode observer,” in Proc. IEEE IECON, 2017.
    [53] S. Po-ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for sensorless PMSM drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, 2012.
    [54] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002.
    [55] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288-295, 2003.
    [56] J. M. Liu and Z. Q. Zhu, “Improved sensorless control of permanent-magnet synchronous machine based on third-harmonic back EMF,” IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 1861-1870, 2014.
    [57] C. Silva, G. M. Asher and M. Sumner, “Hybrid rotor position observer for wide speed- range sensorless PM motor drives including zero speed,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 373-378, 2006.
    [58] H. Zhang, W. Liu, Z. Chen, and N. Jiao, “An overall system delay compensation method for IPMSM sensorless drives in rail transit applications,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1316-1329, 2021.
    [59] I. Hideaki, I. Masanobu, K. Takeshi, and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
    [60] Y. Mollet and J. Gyselinck, “Mechanical-state estimator for doubly-fed induction generators application to encoder-fault tolerance and sensorless control,” in Proc. IEEE ICEM, 2014, pp. 1-7.
    [61] Akrad, D. Diallo and M. Hilairet, “Design of a fault-tolerant controller based on observers for a PMSM drive,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1416–1427, 2011.
    [62] G. H. B Foo, X. Zhang and D. M. Vilathgamuwa, “A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3485–3495, 2013.
    [63] C. M. Verrelli et al., “Speed sensor fault tolerant PMSM machines: from position-sensorless to sensorless control,” IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 3946-3954, 2019.
    [64] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique, and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013.
    [65] A. Akhavan, J. C. Vasquez and J. M. Guerrero, “A simple method for passivity enhancement of current controlled grid-connected inverters,” IEEE Trans. Power Electron., vol. 35, no. 8, pp. 7735-7741, 2020.
    [66] A. Abdelhakim, P. Mattavelli, D. Yang, and F. Blaabjerg, “Coupled-inductor-based DC current measurement technique for transformerless grid-tied inverters,” IEEE Trans. Power Electron., vol. 33, no. 1, pp. 18-23, 2018.
    [67] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
    [68] S. J. Chiang and C. M. Liaw, “A single-phase three-wire transformerless inverter,” IEE Proc. Electron. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
    [69] J. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems-part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
    [70] T. Friedli, M. Hartmann and J. W. Kolar, “The essence of three-phase PFC rectifier systems-part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
    [71] L. Huber, M. Kumar and M. M. Jovanović, “Performance comparison of three-step and six-step PWM in average-current-controlled three-phase six-switch boost PFC rectifier,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7264-7272, 2016.
    [72] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high power telecommunications rectifiers modules,” IEEE Trans. Ind. Electron., vol. 44, pp. 456-467, 1997.
    [73] T. B. Soeiro and J. W. Kolar, “Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3589-3601, 2013.
    [74] A. Khaligh and M. D. Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, 2019.
    [75] L. Wang, Z. Qin, T. Slangen, P. Bauer, and T. V. Wijk, “Grid impact of electric vehicle fast charging stations: trends, standards, issues and mitigation measures-an overview,” IEEE Open J. Power Electron., vol. 2, pp. 56-74, 2021.
    [76] J. C. Mukherjee and A. Gupta, “A review of charge scheduling of electric vehicles in smart grid,” IEEE Syst. J., vol. 9, no. 4, pp. 1541-1553, 2015.
    [77] Y. C. Hsu, S. C. Kao, C. Y. Ho, P. H. Jhou, M. Z. Lu, and C. M. Liaw, “On an electric scooter with G2V/V2H/V2G and energy harvesting functions,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6910-6925, 2018.
    [78] H. N. de Melo, J. P. F. Trovão, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, “A controllable bidirectional battery charger for electric vehicles with vehicle-to-grid capability,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 114-123, 2018.
    [79] F. Hans, W. Schumacher and L. Harnefors, “Small-signal modeling of three-phase synchronous reference frame phase-locked loops,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 5556-5560, 2018.
    [80] S. Golestan, J. M. Guerrero and J. C. Vasquez, “Three-phase PLLs: a review of recent advances,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1894-1907, 2017.
    [81] S. Golestan, J. M. Guerrero and J. C. Vasquez, “A PLL-based controller for three-phase grid-connected power converters,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 911- 916, 2018.
    [82] E. Ucer et al., “Analysis, design, and comparison of V2V chargers for flexible grid integration,” IEEE Trans. Ind. Appl., vol. 57, no. 4, pp. 4143-4154, 2021.
    [83] M. Shurrab, S. Singh, H. Otrok, R. Mizouni, V. Khadkikar, and H. Zeineldin, “An efficient vehicle-to-vehicle (V2V) energy sharing framework,” IEEE Internet Things J., vol. 9, no. 7, pp. 5315-5328, 2022.
    [84] U. B S, V. Khadkikar, H. H. Zeineldin, S. Singh, H. Otrok, and R. Mizouni, “Direct electric vehicle to vehicle (V2V) power transfer using on-board drivetrain and motor windings,” IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 10765-10775, 2022.
    [85] J. Min and M. Ordonez, “Bidirectional resonant CLLC charger for wide battery voltage range: asymmetric parameters methodology,” IEEE Trans. Power Electron., vol. 36, no. 6, pp. 6662-6673, 2021.
    [86] J. Jung, H. Kim, M. Ryu, and J. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, 2013.
    [87] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. Lai, “Design of bidirectional DC-DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, 2015.
    Half-bridge CLLC resonant converter
    [88] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC-DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, 2017.
    [89] S. Zou, J. Lu, A. Mallik, and A. Khaligh, “Bi-directional CLLC converter with synchronous rectification for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 998- 1005, 2018.
    [90] C. Zhang, P. Li, Z. Kan, X. Chai, and X. Guo, “Integrated half-bridge CLLC bidirectional converter for energy storage systems,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3879-3889, 2018.
    [91] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti.com/lit/ds/ symlink/tms320f28335.pdf, 2016.
    [92] Y. C. Wu, “An EV IPMSM drive with grid-connected and harvested energy auxiliary charging functions,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2022.
    [93] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 2nd ed. New York: Wiley-IEEE, 2002.
    [94] F. Wang, Z. Zhang and E. A. Jones, Characterization of Wide Bandgap Power Semiconductor Devices, The Institution of Engineering and Technology, London, UK, 2018.
    [95] MOSFET & GaN FET Application Handbook, Nexperia, Manchester, UK, 2020.
    [96] IGBT & SiC Gate Driver Fundamentals, Texas Instruments, Dallas, USA, 2021.

    QR CODE