簡易檢索 / 詳目顯示

研究生: 葉哲豪
Yeh, Che-Hao
論文名稱: 應用融合式簡化群體演算法於多產品流程型生產系統隨機資源分配問題之研究
A Hybrid Simplified Swarm Optimization for Multi-Product Stochastic Resource Allocation Problem in Flow Production System
指導教授: 葉維彰
Yeh, Wei-Chang
口試委員: 劉淑範
Liu, Shu-Fan
黃佳玲
Huang, Jia-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 45
中文關鍵詞: 隨機資源分配問題OCBA簡化群體演算法模擬最佳化
外文關鍵詞: stochastic resource allocation problem, optimal computing budget allocation, simplified swarm optimization, simulation optimization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨機資源分配問題(Stochastic resource allocation problem, SRAP)已經被學者們應用在製造系統或是服務系統當中,之所以被人們重視的原因是因為在一個系統當中,資源分配的妥當會影響到整個系統的績效指標(system performance)。資源分配問題的最終目標無非是在滿足資源限制的條件下將資源分配給各個活動(activity),以及尋求一個可以使成本最小化的方案。然而這個問題的困難之處在於系統輸出的績效指標有著隨機性以及無法透過一個解析函數來表示系統績效指標,必須透過重複模擬的結果來評估系統的績效。
    在本篇研究當中,我們以簡化群體演算法(simplified swarm optimization, SSO)結合Optimal computing budget allocation 和區域搜尋法來解決流線型生產線的資源分配問題。SSO被用於大範圍的全域搜尋,OCBA用於分配重複擬次數來選出群體中最佳解。在求解的過程中,進行模擬來評估系統績效是最耗時的一個步驟,透過OCBA的模擬資源分配我們可以有效率地將模擬資源花在變異較大或是較佳的解,可以有效率的辨識出群體中的最佳解。隨後在利用先前的模擬結果進行區域搜尋法,將機台的使用率作為區域搜尋的依據,透過區域搜尋法尋找出鄰近的最佳解。最後,本篇研究所提出的融合式簡化群體演算法(hybrid simplified swarm optimization, HSSO),非常適合用於在隨機資源分配問題,相較於其他演算法,HSSO可以尋找到更佳品質的解。


    Stochastic resource allocation problem (SRAP) has been applied in manufacturing system and service system. Resource allocation is a crucial step in system because system performance and cost can be improved by properly allocating resource to each activity. Allocating resource to each activity under resource constraints and minimizing overall costs are the goal of SRAP. However, the system performance can’t be formulated as a closed-form expressions function and system performance is uncertainly.
    In this study, we proposed a hybrid algorithm based on Simplified Swarm Optimization (SSO) combining with Optimal Computing Budget Allocation (OCBA) and a local search method for SRAP. SSO is applied for global search and OCBA is used to allocate the simulation replications for recognizing the best solution in particle. The core concept of OCBA is allocating the simulation budget to the solutions which has larger standard deviation or superior system performance. Therefore, we can avoid to wasting simulation budget on the solutions with worse system performance and providing reliable solutions. Afterwards, we proposed a local search strategy based on the utilization of machines. By using this local search method we can search local optimum. Finally, the experimental results show that the proposed Hybrid Simplified Swarm Optimization is better than other algorithms.

    摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 VII 簡稱 VIII 第一章、 研究介紹 1 1.1 隨機資源分配問題的重要性與背景 1 1.2 多產品生產系統之問題與動機 3 1.3 研究架構 4 第二章、 文獻回顧 5 2.1 模擬最佳化 5 2.2 製造系統資源配問題 6 2.3 簡化群體演算法(SIMPLIFIED SWARM OPTIMIZATION, SSO) 7 2.4 最佳資源分配(OPTIMAL COMPUTING BUDGET ALLOCATION, OCBA) 8 第三章、 模型描述 10 3.1 符號 10 3.2 模型假設 11 3.3 模型說明 11 3.4 數學模型 14 3.5 研究模型總結 15 第四章、 研究方法 16 4.1 編碼 16 4.2 融合式簡化群體演算法流程說明 16 4.21 簡化群體演算法 16 4.22 OCBA (Optimal Computing Budget Allocation) 19 4.23 區域搜尋法 22 4.3 融合式演算法總結 25 第五章、 實驗結果 27 5.1 簡化群體演算法實驗設計 27 5.2 OCBA參數設定 28 5.3 實驗情境說明 30 5.31 實驗說明 30 5.32 實驗情境 35 5.33 實驗結果 36 第六章、 結論與未來研究方向 39 6.1 結論 39 6.2 未來研究方向 40 參考文獻 41

    [1] J. A. Buzacott and J. G. Shanthikumar, Stochastic models of manufacturing systems. Prentice Hall Englewood Cliffs, NJ, 1993.
    [2] J. Riordan, Stochastic service systems. Wiley New York, 1962.
    [3] R. Badinelli, "A stochastic model of resource allocation for service systems," Service Science, vol. 2, no. 1-2, pp. 76-91, 2010.
    [4] T. Ibaraki and N. Katoh, Resource allocation problems: algorithmic approaches. MIT press, 1988.
    [5] L. Shi, "A New Algorithm for Stochastic Discrete Resource Allocation Optimization," Discrete Event Dynamic Systems, journal article vol. 10, no. 3, pp. 271-294, 2000.
    [6] Y. Carson and A. Maria, "Simulation optimization: methods and applications," in Proceedings of the 29th conference on Winter simulation, 1997, pp. 118-126: IEEE Computer Society.
    [7] J. Banks, Handbook of simulation: principles, methodology, advances, applications, and practice. John Wiley & Sons, 1998.
    [8] E. Tekin and I. Sabuncuoglu, "Simulation optimization: A comprehensive review on theory and applications," IIE transactions, vol. 36, no. 11, pp. 1067-1081, 2004.
    [9] S. G. Henderson and B. L. Nelson, Handbooks in operations research and management science: simulation. Elsevier, 2006.
    [10] S. B. Gershwin and J. E. Schor, "Efficient algorithms for buffer space allocation," Annals of Operations research, vol. 93, no. 1-4, pp. 117-144, 2000.
    [11] K. Bretthauer, "Capacity planning in networks of queues with manufacturing applications," Mathematical and computer modelling, vol. 21, no. 12, pp. 35-46, 1995.
    [12] N. S. Grewal, A. C. Bruska, T. M. Wulf, and J. K. Robinson, "Integrating targeted cycle-time reduction into the capital planning process," in Proceedings of the 30th conference on Winter simulation, 1998, pp. 1005-1010: IEEE Computer Society Press.
    [13] R. Kotcher and F. Chance, "Capacity planning in the face of product-mix uncertainty," in Semiconductor Manufacturing Conference Proceedings, 1999 IEEE International Symposium on, 1999, pp. 73-76: IEEE.
    [14] J. Liu, F. Yang, H. Wan, and J. W. Fowler, "Capacity planning through queueing analysis and simulation-based statistical methods: a case study for semiconductor wafer fabs," International Journal of Production Research, vol. 49, no. 15, pp. 4573-4591, 2011.
    [15] J. Liu, C. Li, F. Yang, H. Wan, and R. Uzsoy, "Production planning for semiconductor manufacturing via simulation optimization," in Simulation Conference (WSC), Proceedings of the 2011 Winter, 2011, pp. 3612-3622: IEEE.
    [16] R. D. Meller and D. S. Kim, "The impact of preventive maintenance on system cost and buffer size," European Journal of Operational Research, vol. 95, no. 3, pp. 577-591, 1996.
    [17] A. Dolgui, A. V. Eremeev, and V. S. Sigaev, "HBBA: hybrid algorithm for buffer allocation in tandem production lines," Journal of Intelligent Manufacturing, vol. 18, no. 3, pp. 411-420, 2007.
    [18] Y. Massim, F. Yalaoui, L. Amodeo, É. Châtelet, and A. Zeblah, "Efficient combined immune-decomposition algorithm for optimal buffer allocation in production lines for throughput and profit maximization," Computers & Operations Research, vol. 37, no. 4, pp. 611-620, 2010.
    [19] W.-C. Yeh, "Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization," IEEE transactions on systems, man, and cybernetics-part A: systems and humans, vol. 42, no. 1, pp. 250-261, 2012.
    [20] W.-C. Yeh, "Orthogonal simplified swarm optimization for the series–parallel redundancy allocation problem with a mix of components," Knowledge-Based Systems, vol. 64, pp. 1-12, 2014.
    [21] C.-L. Huang, "A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems," Reliability Engineering & System Safety, vol. 142, pp. 221-230, 2015.
    [22] W.-C. Yeh, "Novel swarm optimization for mining classification rules on thyroid gland data," Information Sciences, vol. 197, pp. 65-76, 2012.
    [23] W.-C. Yeh and C.-L. Huang, "Simplified swarm optimization to solve the K-harmonic means problem for mining data," in Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems-Volume 2, 2015, pp. 429-439: Springer.
    [24] W.-C. Yeh and C.-M. Lai, "Accelerated simplified swarm optimization with exploitation search scheme for data clustering," PloS one, vol. 10, no. 9, p. e0137246, 2015.
    [25] W.-C. Yeh, C.-M. Lai, and K.-H. Chang, "A novel hybrid clustering approach based on K-harmonic means using robust design," Neurocomputing, vol. 173, pp. 1720-1732, 2016.
    [26] W.-C. Yeh, "An improved simplified swarm optimization," Knowledge-Based Systems, vol. 82, pp. 60-69, 2015.
    [27] W.-C. Yeh, Y.-M. Yeh, P.-C. Chang, Y.-C. Ke, and V. Chung, "Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization," International Journal of Electrical Power & Energy Systems, vol. 55, pp. 741-748, 2014.
    [28] C. G. Cassandras, Discrete event systems: modeling and performance analysis. CRC, 1993.
    [29] C.-H. Chen, J. Lin, E. Yücesan, and S. E. Chick, "Simulation budget allocation for further enhancing the efficiency of ordinal optimization," Discrete Event Dynamic Systems, vol. 10, no. 3, pp. 251-270, 2000.
    [30] C. Shi and S. B. Gershwin, "An efficient buffer design algorithm for production line profit maximization," International Journal of Production Economics, vol. 122, no. 2, pp. 725-740, 2009.
    [31] J. T. Lin and C.-C. Chiu, "A hybrid particle swarm optimization with local search for stochastic resource allocation problem," Journal of Intelligent Manufacturing, pp. 1-15, 2015.
    [32] L. H. Lee, E. P. Chew, S. Teng, and D. Goldsman, "Optimal computing budget allocation for multi-objective simulation models," in Proceedings of the 36th conference on Winter simulation, 2004, pp. 586-594: Winter Simulation Conference.
    [33] L. H. Lee, E. P. Chew, S. Teng, and Y. Chen, "Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem," European Journal of Operational Research, vol. 189, no. 2, pp. 476-491, 2008.
    [34] S.-C. Horng, S.-Y. Lin, L. H. Lee, and C.-H. Chen, "Memetic algorithm for real-time combinatorial stochastic simulation optimization problems with performance analysis," IEEE transactions on cybernetics, vol. 43, no. 5, pp. 1495-1509, 2013.

    QR CODE