簡易檢索 / 詳目顯示

研究生: 彭兆珩
論文名稱: 水相中銅胺基酸錯合物活化過氧化氫之醛產物分析
Formation of aldehydes in the activation of hydrogen peroxide by Cu(II)/amino acid complexes
指導教授: 吳劍侯
口試委員: 林萬寅
鄧金培
吳劍侯
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 50
中文關鍵詞: 銅錯合物過氧化氫丙酸亞硝基二甲基苯胺胺甘露醇3-甲硫基丙醛
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用Cu(II)與α-Ala形成的錯合物,在磷酸鹽緩衝溶液中活化過氧化氫,以量測反應中所形成的乙醛,並由其產生速率來探討系統活化過氧化氫的反應途徑。實驗中探討包括pH、離子強度、Cu(II)、過氧化氫與Alanine濃度的影響,由於系統中會產生許多自由基,後續則使用亞硝基二甲基苯胺(p-Nitrosodimethylaniline, PNDA)來觀察系統中OH.的產率,與量測乙醛反應的變化,以及使用OH.抑制劑甘露醇(mannitol)觀察對反應的影響;另外也使用Cu(OOH).抑制劑3-甲硫基丙醛(methional)發現後者對系統中產生乙醛速率有很明顯的抑制效果,因而推論Cu(I)OOH.為主要活性氧化物種,最後從實驗結果及文獻整理推測系統中可能產生乙醛的反應途徑。


    目錄 中文摘要.....................I 英文摘要.....................II 目錄.........................III 圖目錄.......................V 表目錄.......................VI 第一章 前言................1 1.1 簡介................1 1.2 研究目的及動機......1 第二章 文獻回顧............3 2.1 金屬活化H2O2的反應 2.2 活化H2O2的應用..............4 2.3 活化H2O2的反應機制.............4 2.4 銅的介紹.........5 2.5 氨基酸的介紹................6 2.6 銅與胺基酸的鍵結情況與物種分佈................8 2.7 銅胺基酸錯合物活化H2O2反應動力學......9 2.8 實驗原理介紹.....................11 2.8.1銅丙氨酸活化H2O2............11 2.8.2醛的測量方法................11 2.8.3 分子吸收光譜法.............13 第三章 實驗方法.................14 3.1 實驗裝置..................14 3.1.1. 高效率液相層析儀(HPLC).....14 3.1.2. 紫外可見光譜儀(UV-Vis spectrometer).....................14 3.1.3. pH meter.................14 3.2 實驗計算軟體.............14 3.2.1 MINTEQ......................14 3.2.2 NIST46.4 熱力學資料庫.......16 3.3 實驗藥品..................17 3.4 分析流程..................18 3.4.1. 母液配製..................18 3.4.2. 樣品配製..................19 3.4.3. 醛的分析..................20 第四章 結果與討論................22 4.1乙醛的分析......................22 4.2活化H2O2要素的確定..............25 4.3離子強度的影響..................26 4.4 pH值的影響................27 4.5銅錯合物物種分布之影響..........28 4.6 Cu濃度之影響...................30 4.7 H2O2濃度的影響.................30 4.8 OH.清除劑對系統的影響.........32 4.9 Cu(I)OOH•清除劑的影響.........35 4.10反應機制探討...................37 第五章 結論......................39 第六章 未來展望..................39 參考文獻...........................40 附錄...............................47 附錄一 PNDA檢量線..................47 附錄二 DNPH檢量線..................47 附錄三pH =2~4乙醛衍生物長時間的分解....48 附錄四改變不同條件對乙醛產生速率的影響......48 圖目錄 圖2-1 銅胺基酸錯合物結構圖.................9 圖2-2 Michaelis-Menton equation曲線圖.....10 圖3-1 銅物種分佈.........................15 圖3-2 Nist46.4中Cu與Alanine之錯合常數..........17 圖3-3 醛分析的HPLC-UV/VIS之移動相梯度.....19 圖3-4 DNPH及其衍生物UV光譜圖.........20 圖3-5 乙醛標準品層析圖譜.............21 圖3-6 乙醛標準品檢量線................21 圖4-1 acetaldehyde-DNPH 標準品檢量線.............22 圖4-2 acetaldehyde-DNPH衍生物濃度在不同pH下的變化...23 圖4-3 DNPH濃度在不同pH下的增加.................23 圖4-4 乙醛衍生物在pH = 1.8分解濃度變化.........24 圖4-5 不同條件下乙醛產生速率變化圖...................25 圖4-6 乙醛加入H2O2的長時間變化圖...............26 圖4-7 離子強度對反應效率的影響................27 圖4-8 pH對反應效率的影響.........................28 圖4-9 銅胺基酸一二配位錯合物CuL及CuL2與H2O2活化效率比較..29 圖4-10 銅氨基酸濃度對產生乙醛速率的影響...............30 圖4-11 不同H2O2濃度對產生乙醛速率的比較.......31 圖4-12 利用式4-2計算銅氨基酸錯合物(Ala)之Kcat,Km......32 圖4-13 OH •抑制劑在不同濃度對OH •生成速率的影響.....34 圖4-14 OH •抑制劑在不同濃度對乙醛生成速率的影響.......35 圖4-15 methional在不同濃度對系統中產生乙醛的影響.......36 圖4-16 在不同濃度對系統中產生OH•的影響...............37 表目錄 表2-1 胺基酸基本性質介紹.........7 表3-1 藥品的機本物理性質................18 表4-1 各OH•清除劑的清除效率..............33

    Ahner, B. A., Lee, J. G., Price, N. M. and Morel, F. M. M. Phytochelatin concentration in the equatorial Pacific. Deep-Sea Res. I .1998. 45, 1779-1796.

    Ali, F. E.; Barnham, K. J.; Barrow, C. J.; Separovic, F., Metal catalyzed oxidation of tyrosine residues by different oxidation systems of copper/hydrogen peroxide. J. Inorg. Biochem. 2004, 98, 173-184.

    Baldrian, P.; Cajthaml, T.; Merhautova, V.; Gabriel, J.; Nerud, F.; Stopka, P.; Hruby, M.; Benes, M. J., Degradation of polycyclic aromatic hydrocarbons by hydrogen peroxide catalyzed by heterogeneous polymeric metal chelates. Appl. Catal. B-Environ. 2005, 59, 267-274.

    Banos, C. E.; Silva, M., In situ continuous derivatization/pre-concentration of carbonyl compounds with 2,4-dinitrophenylhydrazine in aqueous samples by solid-phase extraction Application to liquid chromatography determination of aldehydes. Talanta 2009, 77, 1597-1602.

    Bar-Or, D.; Rael, L. T.; Lau, E. P.; Rao, N. K. R.; Thomas, G. W.; Winkler, J. V.; Yukl, R. L.; Kingston, R. G.; Curtis, C. G., An analog of the human albumin N-terminus (Asp-Ala-His-Lys) prevents formation of copper-induced reactive oxygen species. Biochem. Biophys. Res. Commun. 2001, 284,856-862.

    Bhattacharjee, S.; Deterding, L. J.; Chatterjee, S.; Jiang, J. J.; Ehrenshaft, M.; Lardinois, O.; Ramirez, D. C.; Tomer, K. B.; Mason, R. P., Site-specific radical formation in DNA induced by Cu(II)H2O2 oxidizing system, using ESR, immuno-spin trapping, LC-MS, and MS/MS. Free Radic. Biol. Med. 2011, 50,1536-1545.

    Cai, R. X.; Kubota, Y.; Fujishima, A., Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. J. Catal. 2003, 219, 214-218.

    Chen, L. H.; Liu, L. Z.; Shen, H. X., Mn(II)-sodium dodecyl sulphate complex mimic enzyme-catalyzed fluorescence quenching of Pyronine B by hydrogen peroxide. Anal. Chim. Acta 2003, 480, 143-150.

    Ciesla, P.; Kocot, P.; Mytych, P.; Stasicka, Z., Homogeneous photocatalysis by transition metal complexes in the environment. J. Mol. Catal. A-Chem. 2004, 224, 17-33.
    Cordis, G. A.; Das, D. K.; Riedel, W., High-performance liquid chromatographic peak identification of 2,4-dinitrophenylhydrazine derivatives of lipid peroxidation aldehydes by photodiode array detection. J. Chromatogr. A 1998, 798, 117-123.

    Cotsaris, E.; Nicholson, B. C., Low-Level Determination of formaldehyde in water by high-performance liquid-chramatography. Analyst 1993, 118, 265-268.

    Deng, C. H.; Li, N.; Zhang, X. M., Development of headspace solid-phase microextraction with on-fiber derivatization for determination of hexanal and heptanal in human blood. J. Chromatogr. B 2004, 813, 47-52.

    Drzewicz, P.; Afzal, A.; El-Din, M. G.; Martin, J. W., Degradation of a Model Naphthenic Acid, Cyclohexanoic Acid, by Vacuum UV (172 nm) and UV (254 nm)/H2O2. J. Phys. Chem. A 2010, 114, 12067-12074.

    Duesterberg, C. K.; Waite, T. D., Process optimization of Fenton oxidation using kinetic modeling. Environ. Sci. Technol. 2006, 40, 4189-4195.

    Ensing, B.; Buda, F.; Baerends, E. J., Fenton-like chemistry in water: Oxidation catalysis by Fe(III) and H2O2. J. Phys. Chem. A 2003, 107, 5722-5731.

    Fayolle, M.; Romagna, F., Copper CMP evaluation: planarization issues. Microelectron. Eng. 1997, 37-8, 135-141.

    Felmy, A. R., Girvin, D. C. and Jenne, E. A. A computer program for calculating aqueous geochemical equilibria. U. S. Environmental Protect Agency, Athens, GA, EPA-600/3-84-032, 1984.

    Feng, J. Y.; Hu, X. J.; Yue, P. L., Degradation of salicylic acid by photo-assisted Fenton reaction using Fe ions on strongly acidic ion exchange resin as catalyst. Chem. Eng. J. 2004, 100, 159-165.

    Ghattas, W.; Giorgi, M.; Mekmouche, Y.; Tanaka, T.; Rockenbauer, A.; Reglier, M.; Hitomi, Y.; Simaan, A. J., Identification of a copper(I) intermediate in the conversion of 1-aminocyclopropane carboxylic acid (ACC) into ethylene by Cu(II) - ACC complexes and hydrogen peroxide. Inorg. Chem. 2008, 47, 4627-4638.

    Goldstein, S.; Meyerstein, D., Comments on the mechanism of the "Fenton like" reaction. Accounts Chem. Res. 1999, 32, 547-550.

    Goonetilleke, P. C.; Roy, D., Relative roles of acetic acid, dodecyl sulfate and benzotriazole in chemical mechanical and electrochemical mechanical planarization of copper. Appl. Surf. Sci. 2008, 254, 2696-2707.

    Goncalves, L. M.; Magalhaes, P. J.; Valente, I. M.; Pacheco, J. G.; Dostalek, P.; Sykora, D.; Rodrigues, J. A.; Barros, A. A., Analysis of aldehydes in beer by gas-diffusion microextraction: Characterization by high-performance liquid chromatography-diode-array detection-atmospheric pressure chemical ionization-mass spectrometry. J. Chromatogr. A 2010, 1217, 3717-3722.

    Granados-Oliveros, G.; Paez-Mozo, E. A.; Ortega, F. M.; Ferronato, C.; Chovelon, J. M., Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl. Catal. B-Environ. 2009, 89, 448-454.

    Hayase, K.; Zepp, R. G., Photolysis of Copper(II)-Amino Acid Complexes In Water. Environ. Sci. Technol. 1991, 25, 1273-1279.

    Kato, Y.; Kitamoto, N.; Kawai, Y.; Osawa, T., The hydrogen peroxide/copper ion system, but not other metal-catalyzed oxidation systems, produces protein-bound dityrosine. Free Radic. Biol. Med. 2001, 31, 624-632.

    Kim, K. H.; Pal, R., Determination of acetaldehyde in ambient air: comparison of thermal desorption-GC/FID method with the standard DNPH-HPLC method. Environ. Monit. Assess. 2010, 161, 295-299.

    Lekchiri, A., Brighli, M., Methenitis, C., Morcellet, J. and Morcellet, M. Complexation of a polyelectrolyte derived from glutamic acid with copper(II).Catalase-like activity of the complexes. J. Inorg. Biochem.. 1991, 44, 229-238.

    Li, J.; Feng, Y. L.; Xie, C. J.; Huang, J.; Yu, J. Z.; Feng, J. L.; Sheng, G. Y.; Fu, J. M.; Wua, M. H., Determination of gaseous carbonyl compounds by their pentafluorophenyl hydrazones with gas chromatography/mass spectrometry. Anal. Chim. Acta 2009, 635, 84-93.

    Li, J. M.; Meng, X. G.; Hu, C. W.; Du, J.; Zeng, X. C., Oxidation of 4-chlorophenol catalyzed by Cu(II) complexes under mild conditions: Kinetics and mechanism. J. Mol. Catal. A: Chem. 2009, 299, 102-107.

    Lin, T. Y.; Wu, C. H., Activation of hydrogen peroxide in copper(II)/amino acid/H2O2 systems: effects of pH and copper speciation. J. Catal. 2005, 232, 117-126.

    Liu W.; Shifu, C.; Wei, Z.; Sujuan, Z., Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. J. Hazard. Mater. 2009, 164, 154-160.

    Lili L.; Xu, H.; Song, D. D.; Cui, Y. F.; Hu, S.; Zhang, G. B., Analysis of volatile aldehyde biomarkers in human blood by derivatization and dispersive liquid-liquid microextraction based on solidification of floating organic droplet method by high performance liquid chromatography. J. Chromatogr. A 2010, 1217, 2365-2370.

    Monfared, H. H.; Amouei, Z., Hydrogen peroxide oxidation of aromatic hydrocarbons by immobilized iron(III). J. Mol. Catal. A-Chem. 2004, 217, 161-164.

    Nerud, F.; Baldrian, P.; Gabriel, J.; Ogbeifun, D., Decolorization of Synthetic Dyes by The Fenton Reagent and The Cu/pyridine/H2O2 System. Chemosphere 2001, 44, 957-961.
    Oliva-Teles, M. T.; Paiga, P.; Delerue-Matos, C. M.; Alvim-Ferraz, M. C. M., Determination of free formaldehyde in foundry resins as its 2,4-dinitrophenylhydrazone by liquid chromatography. Anal. Chim. Acta 2002, 467, 97-103.

    Park, C.; Raines, R. T. Quantitative analysis of the effect of salt concentration on enzymatic catalysis. J. Am. Chem. Soc. 2001, 123, 11472-11479.

    Park, J. H.; Gopishetty, S.; Szewczuk, L. M.; Troxel, A. B.; Harvey, R. G.; Penning, T. M., Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo) by PAH o-quinones: Involvement of reactive oxygen species and copper(II)/copper(I) redox cycling. Chem. Res. Toxicol. 2005, 18, 1026-1037.

    Perez-Benito, J. F., Reaction pathways in the decomposition of hydrogen peroxide catalyzed by copper(II). J. Inorg. Biochem. 2004, 98, 430-438.

    Poulios, I.; Micropoulou, E.; Panou, R.; Kostopoulou, E., Photooxidation of eosin Y in the presence of semiconducting oxides. Appl. Catal. B-Environ. 2003, 41, 345-355.

    Robbins, M. H.; Drago, R. S., Activation of hydrogen peroxide for oxidation by copper(II) complexes. J. Catal. 1997, 170, 295-303.

    Rorabacher, D. B., Electron transfer by copper centers. Chem. Rev. 2004, 104, 651-697.

    Schweigert, N.; Acero, J. L.; Gunten, U. V.; Canonica, S.; Zehnder, A. J. B.; Eggen, R. I. L., DNA degradation by mixture of copper and catechol is caused by DNA-copper-hydroperoxo complexes, probably DNA-Cu(I)OOH. Environ. Mol. Mutagen. 2000, 36, 5-12.

    Shah, V.; Verma, P.; Stopka, P.; Gabriel, J.; Baldrian, P.; Nerud, F., Decolorization of dyes with copper(II)/organic acid/hydrogen peroxide systems. Appl. Catal. B-Environ. 2003, 46, 287-292.

    Spencer, W. A.; Jeyabalan, J.; Kichambre, S.; Gupta, R. C., Oxidatively generated DNA damage after Cu(II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: Role of reactive oxygen species. Free Radic. Biol. Med. 2011, 50, 139-147.

    Stadtman, E. R.; Levine, R. L., Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003, 25, 207-218.

    Sykora, J. Photochemistry of copper complexes and their environment aspects. Coor. Chem. Rev. 1997, 159, 95-108.

    Uchiyama, S.; Kaneko, T.; Tokunaga, H.; Ando, M.; Otsubo, Y., Acid-catalyzed isomerization and decomposition of ketone-2,4-dinitrophenylhydrazones. Anal. Chim. Acta 2007, 605, 198-204.

    Uchiyama, S.; Inaba, Y.; Kunugita, N., A diffusive sampling device for simultaneous determination of ozone and carbonyls. Anal. Chim. Acta 2011, 691, 119-124.

    Velusamy, S.; Punniyamurthy, T., Copper(II)-catalyzed C-H oxidation of alkylbenzenes and cyclohexane with hydrogen peroxide. Tetrahedron Lett. 2003, 44, 8955-8957.

    Verma, P.; Baldrian, P.; Nerud, F., Decolorization of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system. Chemosphere 2003, 50, 975-979.

    Vogel, M.; Buldt, A.; Karst, U., Hydrazine reagents as derivatizing agents in environmental analysis - a critical review. Fresenius J. Anal. Chem. 2000, 366, 781-791.

    Wang, Q.; O'Reilly, J.; Pawliszyn, J., Determination of low-molecular mass aldehydes by automated headspace solid-phase microextraction with in-fibre derivatisation. J. Chromatogr. A 2005, 1071, 147-154.

    Yamashita, N.; Tanemura, H.; Kawanishi, S., Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II). Mutation Research 1999, 425, 107-155.

    Yu, X. Y., Critical evaluation of rate constants and equilibrium constants of hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. J. Phys. Chem. Ref. Data 2004, 33, 747-763.

    Zegota, H., High-performance liquid chromatography of methanol released from pectins after its oxidation to formaldehyde and condensation with 2,4-dinitrophenylhydrazine. J. Chromatogr. A 1999, 863, 227-233.

    Zhang, G. K.; Gao, Y. Y.; Zhang, Y. L.; Guo, Y. D., Fe2O3-Pillared Rectorite as an Efficient and Stable Fenton-Like Heterogeneous Catalyst for Photodegradation of Organic Contaminants. Environ. Sci. Technol. 2010, 44, 6384-6389.

    Zhou, X., Huang, G., Civerolo, K., Schwab, J., Measurement of Atmospheric Hydroxyacetone, Glycolaldehyde, and Formaldehyde. Environ. Sci. Technol. 2009, 43, 2753-2759.

    行政院環保署環境檢驗所, 空氣中氣態之醛類化合物檢驗方法-以DNPH衍生物之高效能液相層析測定法 NIEA A705.11C 2006.

    郭俊廷. 銅-胺基酸錯合物活化H2O2之動力學與反應機制探討. 碩士論文,國立清華大學, 2006.

    蘇育褘. 銅-胺基酸錯合物活化H2O2之研究:醛及有機酸的效應. 碩士論文, 國立清華大學, 2007.

    葉雲臺. 二價銅對高效液相層析搭配2,4-二硝基苯肼管柱前衍生系統分析脂肪醛的影響與探討. 碩士論文, 國立清華大學, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE