簡易檢索 / 詳目顯示

研究生: 林哲平
論文名稱: 以聚噁唑啉及其共聚物製備奈米基因載體之研究及其在癌症治療上之應用
Gene Delivery System and Gene Therapy based on Poly(2-ethyl-2-oxazoline) and it's Copolymers
指導教授: 薛敬和
口試委員: 劉英麟
駱俊良
蔡協致
黃郁棻
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 151
中文關鍵詞: 聚噁唑啉基因治療酸鹼應答型高分子微胞基因傳輸載體
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • poly(2-ethyl-2-oxazoline)(PEOz)為一水溶性高分子,除了高親水性外,亦具備了酸鹼應答性及生物相容性,近幾年亦被FDA認可通過做為生物黏著劑。此外,由於PEOz易於製備團聯共聚物(copolymer)之特性,更使PEOz的應用與設計無限寬廣。本研究之主要構想是以親水性高分子PEOz為主體,製備功能性之奈米基因載體,以期應用於基因治療。本研究將分三部份分別陳述。

    第一部份、酸鹼應答型高分子微胞做為細胞內基因傳輸載體及在基因傳輸上的應用。本部分研究目的在設計一具酸鹼應答性及生物相容性之陽離子型高分子團聯共聚物poly(oxazoline/ethylenimine)-b -poly(2-ethyl-2-oxazoline)-NH2, P(EOz/EI)-b-PEOz-NH2),此團聯共聚物之P(EOz/EI) 鏈段為陽離子高分子,可與DNA經靜電作用結合成聚複合體(polyplex),而控制P(EOz/EI)水解程度及調整適當的電荷強度,則可降低細胞毒性及提高基因傳輸效率。此外殼PEOz具有安定聚複合體結構、提高親水性、低毒性及避免受免疫系統辨識之優點,而PEOz所特有的酸鹼應答性更可在基因聚複合體進入細胞後,達到結構破壞進而幫助基因脫附的效果。此外本研究利用巨起始劑之方法所形成之團連共聚物末端具有胺基(amino group),可進一步與各種功能型官能基產生鍵結,提升其應用價值。實驗結果顯示,雙團聯共聚物P(EOz/EI)-b-PEOz相較於Branched-Poly(ethylenimine) (B-PEI)具有低細胞毒性,本身具有酸鹼應答性,轉染效率也與市售載體相當,藉由設計始末端帶有NH2官能基更讓此載體之發展性大幅提昇。因此本研究所合成之雙團聯共聚物為優良的陽離子高分子基因載體,故具有應用在基因治療的潛力。
    第二部份、三聚離子型基因載體之研發及其在基因傳遞上之應用。本部分研究目的在設計一具備複合型結構之高分子基因載體,利用具生物相容性之PEOz與於中性環境下帶負電性之PMAA (polymethacrylic acid)合成雙團聯共聚物 (poly(2-ethyl-2-oxazoline)- b-poly(methacrylic acid), PEOz-b-PMAA ),再進一步藉由電性吸引方式與表面帶正電性之B-PEI/DNA聚複合體前驅物結合,形成具有複合結構的非病毒型基因載體。親水性高分子PEOz裸露於載體外殼,以提高載體於血液循環中之安定性,避免被巨噬細胞所吞噬,降低載體本身之細胞毒性,並利用內層B-PEI之高轉染效率來達到改善基因傳輸之效率。整體而言,利用PEOz-PMAA與B-PEI/DNA所結合之複合結構微胞可大幅提升B-PEI/DNA聚複合體之生物相容性,且表現出相當程度的轉染與細胞吞噬效率。

    第三部份、基因傳輸之影像分析及癌症治療之療效研究,本部分研究首先選取前兩部分結果較佳之高分子與微胞組成,分別針對微胞粒徑大小、界面電位、高分子材料毒性、微胞毒性及轉染效果等做比較,探討兩者之間差異,進而選擇較適當的基因載體,進行基因傳輸影像分析及癌症治療之療效研究。分析結果顯示,第一部份之高分子基因載體P(EOz/EI)-b-PEOz具有較佳之表現。以P(EOz/EI)-b-PEOz進行後續的研究,包覆抗血管增生因子human Endo::Angio(hEA),藉由觀察腫瘤大小及活體影像來探討基因治療之效果。實驗結果顯示本研究所設計之P(EOz/EI)-b-PEOz高分子基因載體,包覆hEA後能有效的抑制腫瘤成長,在注射後短時間內(3小時)能有效的聚集在癌細胞處,並於24小時後藉由代謝系統漸漸累積在膀胱處,顯示此基因載體在基因治療上應當是相當有發展性。


    The research synthesized the non-viral gene vectors based on poly(2-ethyl-2-oxazo-line) and it’s copolymer.

    Part 1: This study synthesized the non-viral and pH-sensitive gene carrier, poly((2-ethyl-2-oxazoline)-co-ethylenimine)-block-poly(2- ethyl-2-oxazoline) (P(EOz/EI)-b-PEOz). The gene carrier contains both cationic poly((2-ethyl-2-oxazoline)-co-ethylenimine) (P(EOz/EI)) segments and charge-neutral poly(2-ethyl-2-oxazoline) (PEOz) segments. In this study, PEOz was used as biocompatibility shell and as the core source. A technique using methanesulfonyl poly((2-ethyl-2-oxazoline)-co-ethylenimine, (P(EOz/EI)-OMs) as a macroinitiator to modify the outer shell PEOz segment provided an amino group at the chain terminus. P(EOz/EI)-b-PEOz were coordinated with plasmid DNA, and the resulting complexes were characterized by gel permeation chromatography and 1H NMR spectra. The P(EOz/EI)-b-PEOz polyplexes showed suitable mean particle size, low cytotoxicity, and acceptable transfection because of shielding of PEI by PEOz outer shell. TEM morphology showed that the stable core-shell structure of ternary polyplexes at pH 7.4 collapsed and released plasmid at pH 5. Observations of cell uptake of the B-PEI/DNA polyplex and P(EOz/EI)-b-PEOz/DNA polyplexes by CLSM revealed that P(EOz/EI)-b-PEOz polyplexes started to accumulate after 6 h incubation and accumulated significantly after 12 h. The results indicated that the hydrophilic, charge-neutral PEOz shell stabilized polyplex formation, and enhanced polyplex cell viability. Polyplex transfection efficiencies were as high as those of commercially available transfection reagents. Our results suggest that this novel gene carrier, based on the diblock copolymer P(EOz/EI)-b-PEOz, has potential for in non-viral gene therapy applications.

    Part 2: This investigation demonstrates new ternary gene delivery systems, based on the pH-responsive diblock copolymer poly(2-ethyl-oxazoline)-block-poly(methacrylic acid) (PEOz-b-PMAA), and the branched-poly (ethylenimine) (B-PEI). The plasmid DNA is complexed with B-PEI and further with PEOz-b-PMAA to obtain ternary polyplexes (DNA/B-PEI/PEOz-b-PMAA). PMAA was partially dissociated at neutral pH with a negative charge, to attach to the positively charged surface of the B-PEI/DNA polyplex. The ternary polyplexes also desorb and return to the original pre-poly complex to help gene release after cell uptake due to PMMA becomes neutral charge under an acid environment in endosome. The ternary polyplexes show suitable mean particle size, low cytotoxicity, and acceptable transfection at pH 7.4 because of shielding of B-PEI by PEOz-b-PMAA. A transmission electron microscopy morphological examination shows that the stable core-shell structure of ternary polyplexes at pH 7.4 collapsed and released plasmid at pH 5. Observations of the cell uptake of the B-PEI/DNA polyplex and ternary polyplexes by confocal laser-scanning microscope revealed that ternary polyplexes started to accumulate after 3 h of incubation and accumulated significantly after 6 h. In conclusion, the ternary polyplex improves the cytotoxicity of the single B-PEI/DNA polyplex, and presents a pH-responsive behavior to enhance gene escape from the polyplex. The ternary polyplex constitutes a useful approach for gene carrier design.

    Part 3: The primary objective of this study is to explore the feasibility of inhibiting tumor growth via the delivery of endostatin-angiostatin (hEA) fusion gene by above non-viral gene carrer. We first compared above two gene carriers in particles size, zeta potential, cell toxicity and gene transfection efficiency. The results indicated that the gene carrier P(EOz/EI)-b-PEOz from first part had better quality for gene delievery, so we chose P(EOz/EI)-b-PEOz for further research. The results indicated that gene carrier P(EOz/EI)-b-PEOz with hEA led to a higher degree of tumor growth inhibition, and can be easily accumulated in tumor and metabolized. In conclusion, the P(EOz/EI)-b-PEOz constitutes a useful approach for gene carrier design.

    目錄 一、 摘要 ……………………………………………………………………i 二、 文獻回顧……………………………………………………………… 1 2-1. 病毒型基因載體 ……………………………………………… 1 2-1-1. 反轉錄病毒……………………………………………………1 2-1-2. 腺病毒…………………………………………………………3 2-1-3. 腺相關病毒……………………………………………………3 2-2. 非病毒型基因載體………………………………………………4 2-2-1. 微脂粒…………………………………………………………5 2-2-2. 陽離子高分子…………………………………………………8 2-3. 聚噁唑啉 ………………………………………………………10 2-4. 聚乙烯亞胺 ……………………………………………………13 2-4-1. 分枝聚乙烯亞胺 ……………………………………………14 2-4-2. 線性聚乙烯亞胺 ……………………………………………16 2-5. 共聚合高分子基因載體 ………………………………………17 2-6. 酸鹼應答型微胞 ………………………………………………21 2-7. 混合型微胞 ……………………………………………………24 2-8. 基因載體之形成與傳遞 ………………………………………29 2-8-1. 質體 …………………………………………………………29 2-8-2. 複合體之形成 ………………………………………………30 2-8-3. 非病毒型基因載體傳遞的過程 ……………………………32 2-9. 癌症的基因治療 ………………………………………………38 2-10. 血管新生 (angiogenesis)與腫瘤之關係 …………………39 2-11. 血管新生與腫瘤轉移 ………………………………………41 2-12. 血管新生抑制物的發現 ……………………………………41 2-13. Human Endo::Angio (hEA) …………………………………43 研究背景與動機………………………………………………………45 三、 實驗方法………………………………………………………………53 3-1. 實驗藥品 ………………………………………………………53 3-2. 實驗儀器 ………………………………………………………56 3-3. 高分子合成 ……………………………………………………58 3-3-1.合成陽離子型高分子團聯共聚物……………………………58 3-3-1-1. PEOz-OH之合成 …………………………………………58 3-3-1-2. PEOz-OMs之製備 ………………………………………58 3-3-1-3. P(EOz/EI)-OMs之製備 …………………………………59 3-3-1-4. P(EOz/EI)-b-PEOz-NH2之合成 …………………………59 3-3-2.陰離子型高分子團聯共聚物…………………………………61 3-3-2-1. PEOz之合成 …………………………………………61 3-3-2-2. 催化劑DPTS之合成………………………………………61 3-3-2-3. Macroinitiator (PEOz)2-ABCPA之合成………………62 3-3-2-4. PEOz-b-PMAA之合成 ……………………………………63 3-4. 高分子結構鑑定與分析 ………………………………………64 3-5. 微胞之製備 ……………………………………………………65 3-6. 聚複合體之製備及粒徑與界面電位分析 ……………………66 3-7. 膠體電泳分析 …………………………………………………67 3-8. 酸鹼應答 ………………………………………………………67 3-9. 形貌觀察 ………………………………………………………68 3-10. 高分子與聚複合體之生物性質 ……………………………68 3-11. 螢光共軛焦顯微鏡試片製作 ………………………………71 3-12. 癌症的基因治療………………………………………………71 四、 實驗結果與討論………………………………………………………73 4-1. 酸鹼應答型高分子微胞做為細胞內基因傳輸載體及在基因 傳輸上的應用實驗結果與討論…………………………………73 4-1-1. 合成P(EOz/EI)-b-PEOz-NH2雙團聯共聚物 ……………73 4-1-2. 高分子結構鑑定與分析 ……………………………………74 4-1-2-1. 1H-NMR分析 ……………………………………………74 4-1-2-2. GPC分析 …………………………………………………76 4-1-2-3. TNBS分析 …………………………………………………78 4-1-3. 菌株培養與DNA純化 ………………………………………80 4-1-4. 粒徑與界面電位分析 ………………………………………81 4-1-5. 膠體電泳分析 ………………………………………………83 4-1-6.聚複合體酸鹼應答性分析……………………………………85 4-1-7. 形貌觀察 ……………………………………………………86 4-1-7-1. CD-SEM ……………………………………………………86 4-1-7-2. TEM…………………………………………………………87 4-1-8. 高分子與聚複合體之生物性質 ……………………………89 4-1-8-1. 高分子之細胞毒性 ………………………………………89 4-1-8-2. 聚複合體之細胞轉染 ……………………………………92 4-1-9.螢光共軛焦顯微鏡分析複合體於細胞內之行為……………95 4-2. 三聚離子型基因載體之研發及其在基因傳遞上之應用 ……98 4-2-1. 合成雙團聯共聚物高分子PEOz-b-PMAA …………………98 4-2-2. PEOz-b-PMAA 與B-PEI的酸鹼緩衝效應…………………102 4-2-3. B-PEI /DNA之粒徑分析與介面電位測試 ………………103 4-2-4. 三聚離子型複合體之粒徑分析與介面電位測試…………106 4-2-5. 膠體電泳實驗………………………………………………110 4-2-6. 材料毒性分析………………………………………………111 4-2-7.複合體微胞對細胞毒性分析 ………………………………112 4-2-8. 聚複合體之細胞轉染 ……………………………………115 4-2-9. TEM分析複合體微胞型態 ………………………………118 4-2-10. 螢光共軛焦顯微鏡分析複合體於細胞內之行為 ………122 4-3. 高分子型基因載體於癌症治療與影像系統之應用…………124 4-3-1. 基因載體之選擇……………………………………………124 4-3-2. 動物體腫瘤大小……………………………………………131 4-3-3. 動物體內微胞分佈影像觀察………………………………133 五、 結論 …………………………………………………………………136 六、 參考文獻 ……………………………………………………………142 附錄 …………………………………………………………………152 圖目錄 圖2-1. 反轉錄病毒載體感染細胞途徑…………………………………………2 圖2-2. 各種脂質分子結構 ……………………………………………………7 圖2-3. 各種陽離子高分子結構…………………………………………………8 圖2-4. Chitosan的化學結構 …………………………………………………10 圖2-5. 三級醯胺之共振結構 …………………………………………………11 圖2-6. Oxazoline聚合反應之異構化 ………………………………………12 圖2-7. 聚乙烯亞胺的各種形式與其所屬單體 ………………………………14 圖2-8. 分枝聚乙烯亞胺的聚合機構 …………………………………………15 圖2-9. poly(2-ethyl-2-oxazoline)加酸水解為線性聚乙烯亞胺 …………17 圖2-10. 核殼結構示意圖 ………………………………………………………19 圖2-11. 聚電解質高分子的酸鹼應答 …………………………………………22 圖2-12. PDEA-PMEMA在20 ℃時微胞與反轉微胞形成之示意圖 ……………23 圖2-13. 利用PASO作為酸鹼應答材料…………………………………………23 圖2-14. 電性結合式高分子混合型奈米微胞 …………………………………25 圖2-15. 混合型奈米微胞疏水性自我排列示意圖 ……………………………25 圖2-16. 生物可降解性混合型高分子微胞 ……………………………………26 圖2-17. 兼具酸鹼應答與親水外層結構的基因载體 …………………………28 圖2-18. 質體DNA的原子力顯微鏡影像 ………………………………………29 圖2-19. 質體受陽離子高分子壓縮型之形成示意圖 …………………………30 圖2-20. TEM觀測下形成toroid結構之複合體 ……………………………31 圖2-21. DNA與陽離子高分子於溶液中的穩定性對濃度關係 ………………32 圖2-22. 非病毒基因載體傳遞基因之過程 ……………………………………33 圖2-23. 質子海綿理論 …………………………………………………………36 圖2-24. 腫瘤成長與血管增生 …………………………………………………40 圖2-25. Human Endo::Angio …………………………………………………44 圖2-26. 研究示意圖 ……………………………………………………………51 圖2-27. 改良式基因載體研究示意圖 ……………………………………52 圖2-28. 雙層結構之非病毒型基因傳輸載體形成示意圖 ……………………52 圖3-1. PEOz-OH之合成流程圖 ………………………………………………60 圖3-2. PEOz-OMs之製備流程圖 ………………………………………………60 圖3-3. P(EOz/EI)-OMs之製備流程圖 ………………………………………60 圖3-4. P(EOz/EI)-b-PEOz-NH2之合成流程圖 ………………………………60 圖3-5. (PEOz)2-ABCPA之合成流程圖 ………………………………………62 圖3-6. PEOz-b-PMAA之合成流程圖 …………………………………………63 圖3-7. MTT assay 示意圖 ……………………………………………………69 圖4-1. Poly(2-substituted-2-oxazoline)的開環聚合及水解反應 ………73 圖4-2. PEOz-OMs聚合物之1H-NMR光譜圖 ……………………………………75 圖4-3. P(EOz/EI)-OMs聚合物之1H-NMR光譜圖………………………………75 圖4-4. P(EOz/EI)-b-PEOz-NH2聚合物之1H-NMR光譜圖 ……………………76 圖4-5. 高分子PEOz20K之凝膠滲透層析分析(GPC) …………………………77 圖4-6. TNBS 檢量線 ……………………………………………………………78 圖4-7. 蟲螢光酶編碼質體pUHC-13-3之圖譜…………………………………80 圖4-8. 不同P/D比對各種高分子之(a)粒徑及(b)界面電位結果……………82 圖4-9. 不同P/D比對各種高分子之粒徑及界面電位結果……………………83 圖4-10. PEOz-b-P(EOz-co-EI)聚複合體之膠體電泳分析……………………85 圖4-11.聚複合體LO-20k80及LO-40k80在各種pH値之酸鹼應答分析圖 …86 圖4-12. LO-20k80與DNA形成之聚複合體之SEM圖 ………………………87 圖4-13. 高分子與DNA形成聚複合體之TEM圖 ………………………………88 圖4-14. 高分子與DNA形成聚複合體之TEM圖 ………………………………88 圖4-15. 高分子與DNA形成聚複合體之TEM圖 ………………………………89 圖4-16. 活細胞中MTT的代謝反應 ……………………………………………90 圖4-17. 各種高分子在不同濃度下之細胞存活率 ……………………………91 圖4-18. 螢火蟲螢光酵素與螢光素之發光反應 ……………………………92 圖4-19. BSA蛋白質濃度檢量線 ………………………………………………94 圖4-20.各種聚複合體及市售載體轉染效率與蛋白質產量之比較……………95 圖4-21. P(EOz/EI)-b-PEOz與Cy 5.5反應式 ………………………………96 圖4-22. 以螢光共軛焦顯微鏡分析不同時間點聚複合體細胞吞噬情形 ……97 圖4-23. (PEOz)2-ABCPA之1H-NMR光譜圖 …………………………………99 圖4-24. PEOz與PMAA之氫鍵作用力 ………………………………………100 圖4-25. PEOz-b-PMAA之1H-NMR光譜圖 ……………………………………101 圖4-26. 各種高分子之pH緩衝示意圖 ……………………………………103 圖4-27. 不同P/D比對高分子B-PEI複合體之粒徑變 ……………………105 圖4-28. 不同P/D比對高分子B-PEI複合體之界面電位變化 ……………105 圖4-29. PEOz10K-PMAA2K與B-EPI 5X複合體在不同P/D比下之粒徑 ……106 圖4-30. PEOz10K-PMAA4K與B-EPI 5X複合體在不同P/D比下之粒徑 ……107 圖4-31. PEOz15K-PMAA2K與B-EPI 5X複合體在不同P/D比下之粒徑 ……107 圖4-32. E6M2與E6M4與B-EPI 5X複合體在不同P/D比下之粒徑 ………108 圖4-33. E6M2與E6M4與B-EPI 3X複合體在不同P/D比下之粒徑 ………109 圖4-34. E6M2與E6M4與B-EPI 1X複合體在不同P/D比下之粒徑 ………110 圖4-35.聚複合體之膠體電泳分析 ……………………………………………111 圖4-36.不同高分子濃度下各種高分子之細胞存活率比較 …………………112 圖4-37. 各式複合體微胞之細胞存活率比較 …………………………………114 圖4-38. 各種不同P/D比之B-PEI/DNA複合體轉染效果比較 ……………116 圖4-39. 各種不同P/D比之三聚離子複合體之轉染效果比較 ……………117 圖4-40. 各種基因載體型態 …………………………………………………118 圖4-41. 高分子與DNA形成聚複合體之TEM圖 ………………………………119 圖4-42. 高分子與DNA形成聚複合體之TEM圖 ………………………………119 圖4-43. 高分子與DNA形成聚複合體之TEM圖 ………………………………120 圖4-44. 聚複合體BPEI、E6M2及E6M4在各種pH値之酸鹼應答分析圖……121 圖4-45. Cy5.5 NHS Ester & DAPI結構式 ……………………………………122 圖4-46.以螢光共軛焦顯微鏡分析不同時間點下B-PEI及三聚離子型複合體 細胞吞噬情形 …………………………………………………………123 圖4-47. 各種高分子微胞之粒徑比較 …………………………………………125 圖4-48. 各種高分子微胞之界面電位比較 ……………………………………126 圖4-49. 各種高分子材料之細胞毒性比較 ……………………………………127 圖4-50. 各種聚複合體之細胞毒性比較 ………………………………………128 圖4-51. 各種高分子微胞之轉染效果比較 ……………………………………129 圖4-52. 高分子LO20K80及LO40K80包覆不同量之hEA (25、50μg)在不 同時間點其腫瘤大小 …………………………………………………132 圖4-53. 具螢光標官能基之基因聚複合體於腫瘤裸鼠之微胞分佈圖 ………134 圖4-54. 癌細胞處之ROI變化 …………………………………………………135 圖4-55. 經修正後之微胞分佈圖 ……………………………………………135 表目錄 表2-1世界各地所核可的抗血管新生藥物 ……………………………………42 表4-1. PEOz之數量平均分子量及分子量分佈 ………………………………77 表4-2. P(EOz/EI)-b-PEOz-NH2之水解率及分子量 …………………………79 表4-3、雙團聯聚合物PEOz-b-PMAA之成分分 ……………………………101

    六、 參考文獻

    1. Anderson W. F., Nature, 392, 25-30, 1998
    2. Eglitis M. A. and Anderson W. F., Biotechniques., 6, 608-14, 1988
    3. Graham F. L. and Prevec L., Mol. Biotechnol., 3, 207-20, 1995
    4. Yang Y. and Wilson J. M., J. Immunol., 155, 2564-70, 1995
    5. Kotin R. M., Hum. Gene Ther., 5, 793-801, 1994
    6. Hermonat P. L. and Muzyczka N., Proc. Natl. Acad. Sci. U. S. A., 81, 6466-70, 1984
    7. Felgner P. L., Barenholz Y., Behr J. P., Cheng S. H., Cullis P., Huang L., Jessee J. A., Seymour L., Szoka F., Thierry A. R., Wagner E. and Wu G., Hum. Gene Ther., 8, 511-2, 1997.
    8. Bangham A. D., Standish M. M. and Watkins J. C., J. Mol. Biol., 13, 238-52, 1965
    9. Loke S. L, Stein C. A., Zang X., Avigan M. and Cohen J., Curr. Top. Microbiol. Immunol., 141, 282-9, 1988
    10. Litzinger D. C. and Huang L., Biochim Biophys Acta., 1113, 201-27, 1992
    11. Chu C. J., Dijkstra J., Lai M. Z., Hong K. and Szoka F. C., Pharm. Res., 7, 824-834, 1990
    12. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M. and Danielsen M., Proc. Natl. Acad. Sci. U. S. A., 84, 7413-7, 1987
    13. Zelphati O. and Szoka F. C., J. Control. Release, 41, 99–119, 1996
    14. Behr J. P., Bioconjugate Chem., 5, 382-9, 1994
    15. Filion, M. C. and Phillips, N. C., Int. J. Pharm., 162, 159–170, 1998
    16. Yamaoka T., Advance in Biomaterials and Drug Delivery Systems, Princeton, Taipei, Taiwan, 397, 2002
    17. Gregory L. G., Harbottle R. P., Lawrence L., Knapton H. J., Themis M. and Coutelle C., Mol. Ther., 7, 19-26, 2003
    18. Yamaoka T., Hamada N., Iwata H., Murakami A. and Kimura Y., Chem. Lett., 11, 1171-2, 1998
    19. Han S., Mahato R. I., Sung Y. K. and Kim S. W., Mol. Ther., 2, 302-17, 2000
    20. Sato T., Ishii T. and Okahata Y., Biomaterials, 22, 2075-80, 2001
    21. MacLaughlin F. C., Mumper R. J., Wang J., Tagliaferri J. M., Gill I., Hinchcliffe M. and Rolland A. P., J. Control. Release, 56, 259-72, 1998
    22. Zauner W, Ogris M. and Wagner E., Adv. Drug Deliv. Rev., 30, 97-113, 1998
    23. Erbacher P., Roche A. C., Monsigny M. and Midoux P., Exp. Cell Res., 225, 186-94, 1996
    24. Tsutomu K., Shizuo N., Taneo M. and Kenichi F., Journal of Polymer Science Part B: Polymer Letters, 4, 441-5, 1966
    25. Kobayashi S., Kaku M. and Saegusa T., Macromolecules, 21, 334-8, 1988
    26. Gangfeng C. and Morton H. L., J. Polym. Sci. Pol. Chem., 30, 671-7, 1992
    27. Kwon, I. C., Bae Y. H. and Kim S. W., Nature, 354, 291, 1991
    28. Godbey W. T., Wu K. K. and Mikos A. G., J. Control. Release, 60, 149-60, 1999
    29. Dunlap D. D., Maggi A., Soria M. R. and Monaco L., Nucleic Acids Res., 25, 3095-101, 1997
    30. Von H. A., Petersen H., Li Y. and Kissel T., J. Control. Release, 69, 309-22, 2000
    31. Behr J. P., Chimia, 51, 34-6, 1997
    32. Otmane B., Frank L., Marla A. Z. and Mojgan D. M., Proc. Natl. Acad. Sci. U. S. A., 92, 7297-301, 1995
    33. Pollard H., Remy J. S., Loussouarn G., Demolombe S., Behr J. P. and Escande D., J. Biol. Chem., 273, 7507-11, 1998
    34. Godbey W. T., Wu K. K. and Mikos A. G., J. Biomed. Mater. Res. Part A, 45, 268-75, 1999
    35. Fischer D., Bieber T., Li Y., Elsasser H. P. and Kissel T., Pharm. Res., 16,1273-9, 1999
    36. Abdallah B., Hassan A., Benoist C., Goula D., Behr J. P. and Demeneix B. A., Hum. Gene Ther., 7, 1947-54, 1996
    37. Wightman L., Kircheis R., Rossler V., Carotta S., Ruzicka R., Kursa M. and Wagner E., J. Gene. Med., 3, 362-72, 2001
    38. Jeong J. H., Song S. H., Lim D. W., Lee H. and Park T. G., J. Control. Release, 73, 391-9, 2001
    39. Goula D., Remy J. S., Erbacher P., Wasowicz M., Levi G., Abdallah B. and Demeneix B. A., Gene Ther., 5, 712-17, 1998
    40. Ogris M., Brunner S., Schuller S., Kircheis R. and Wagner E., Gene Ther., 6, 595-605, 1999
    41. Kakizawa Y. and Kataoka K., Adv. Drug Deliv. Rev., 54, 203-22, 2002
    42. Katayose S. and Kataoka K., Bioconjugate Chem., 8, 702-7, 1997
    43. Choi Y. H., Liu F., Kim J. S., Choi Y. K., Park J. S. and Kim S.W., J. Control. Release, 54, 39-48, 1998
    44. Choi J. H., Choi J. S., Suh H. and Park J. S., Bull. Korean Chem. Soc., 22, 46-52, 2001
    45. Petersen H., Fechner P. M., Martin A. L., Kunath K., Stolnik S., Roberts C. J., Fischer D., Davies M. C. and Kissel T., Bioconjugate Chem., 13, 845-54, 2002
    46. Kichler A., Chillon M., Leborgne C., Danos O. and Frisch B. I., J. Control. Release, 81, 379-88, 2002
    47. Daniel W. P. David P. and Robert L., Biotechnol. Bioeng., 67, 217, 2000
    48. Marie C. J. and Jean C. L., Eur. J. Pharm. Biopharm., 48, 101-111, 1999
    49. Philippova O. E., Hourdet D., Audebert R. and Khokhlov A. R., Macromolecules, 32,6646-51, 1999
    50. Pinkrah V. T., Snowden M. J., Mitchell J. C. and Seidal J., Langmuir, 19, 585-90, 2003
    51. Kinam P., Adv. Drug Deliv. Rev., 53, 321, 2001
    52. Liu S. and Armes S. P., Langmuir, 19, 4332, 2003
    53. Steven P. A., Macromolecules, 34, 1503, 2001
    54. Kataoka K., Bioconjugate Chem., 17, 677-88, 2006
    55. Igor L. R., Gleb B. S. and Helmuth M., Colloid Surf. A-Physicochem. Eng. Asp., 202, 127-33, 2002
    56. Atsushi H. and Kataoka K., Science, 283, 65, 1999
    57. Pavel M., Jana H., Karel P., Zdeněk T., Milena Š., Martin H. and Stephen E. W., J. Phys. Chem. B, 107, 8232-40, 2003
    58. Wangqing Z., Linqi S., Yingli A., Lichao G. and Binglin H., J. Phys. Chem. B, 108, 200-4, 2004
    59. Evgeniy A. L., Pavel S. C., Tatiana K. B., Adi E., Victor A. K. and Alexander V. K., J. Phys. Chem. B, 108, 12352-9, 2004
    60. Miroslav Š., Klára P., Eva T. and Karel P., Langmuir, 17, 4240-4, 2001
    61. Klára P., Miroslav Š. and Karel P., Langmuir, 17, 4245-50, 2001
    62. Eun S. L., Kun N. and You H. B., J. Control. Release, 91, 103–13, 2003
    63. Ping C., Chengqing W., Jing Y., Zuowei X. and Chi W., Macromolecules, 37, 3438-43, 2004
    64. Hammad M. A. and Muller B. W., Eur. J. Pharm. Sci., 7 49-55, 1998
    65. Aparna K., Israel R. and Hayat Ö., Pharm. Res., 20, 297-302, 2003
    66. Choi Y. K. and Kim, J. S., Biodegradable mixed polymeric micelles for gene delivery, 1999
    67. Vladimir S. T., Aaron L., James E. H., Vladimir G. B. and Jon A., Nucleic Acids Res., 27, 3090-5, 1999
    68. Kefeng R., Jian J. and Jiacong S., Macromol. Rapid Commun., 26, 1633-8, 2005
    69. Yoshiyuki K., J. Biomater. Sci.-Polym. Ed., 14, 515-31, 2003
    70. Thomas J. L. and Tirrell D. A., J. Control. Release, 67, 203, 2000
    71. Vijay A. S., Kun N. and You H. B., Biomacromolecules, 7, 64-70, 2006
    72. Engin K., Leeper D. B., Cater J. R., Thistlethwaite A. J., Tupchong L. and McFarlane J. D., Int. J. Hyperthermia, 11, 211-6. 1995
    73. Martin A. L., University of Nottingham
    74. Manning G. S., Q. Rev. Biophys., 11 179-246, 1978
    75. Kenneth A. M., Dynamics and Biological Implications, 137, 1987
    76. Roxana G., Biochemistry, 38, 14069, 1999
    77. Bloomfield V. A., Biopolymers, 44, 269, 1997
    78. Nicholas V. H., Proc. Natl. Acad. Sci. U. S. A., 16, 9296, 2003
    79. Toma R., J. Control. Release, 81, 201-17, 2002
    80. Yamaoka T., Research Signpost, Kerala, India, 289, 2002
    81. Bally M. B., Adv. Drug Deliv. Rev., 38, 291-315 , 1999
    82. Wolfert M. A., Dash P. R., Nazarova O., Oupicky D., Seymour L. W., Smart S., Strohalm J. and Ulbrich K., Bioconjugate Chem., 10, 993, 1999
    83. Tang M. X. and Szoka F. C., Gene Ther., 4, 823, 1997
    84. Clark P. R. and Hersh E.M., Mol. Ther., 1, 158, 1999
    85. Yamaoka T., Iwata H., Hamada N., Ide H. and Kimura Y., Nucleic Acids Symp. Series, 31, 229, 1994
    86. Midoux P., Legrand A., Raimond J. and Mayer R., Nucleic Acids Res., 21, 871, 1993
    87. Takai T. and Ohmori H., Biochim Biophys Acta., 1048, 105, 1991
    88. Ellens H., Bentz J. and Szoka F. C., Biochemistry, 23, 1532, 1984
    89. Boussif O., Lezoualch H., Zanta M. A., Mergny M. D., Scherman D., Demeneix B. and Behr J. P., Proc. Natl. Acad. Sci. U. S. A., 92, 7297, 1995
    90. Mortimer I., Tam P., MacLachlan I., Graham R. W., Saravolac E. G. and Joshi P. B., Gene Ther., 6, 403, 1999
    91. Zauner W., Brunner S., Buschle M., Ogris M. and Wagner E., Biochim Biophys Acta., 1428, 57, 1999
    92. Godbey W. T., Wu K. K. and Mikos A. G., Proc. Natl. Acad. Sci. U. S. A., 96, 5177, 1999
    93. Katayose S. and Kataoka K., J. Pharm. Sci., 87, 160, 1998
    94. Kabanov A. V. and Kabanov V. A., Bioconjugate Chem., 6, 7, 1995
    95. Erbacher P., Roche A. C., Monsigny M. and Midoux P., Exp. Cell Res., 225, 186, 1996
    96. 張玉瓏、徐乃芝、許素菁, 生物技術, 新文京.
    97. Folkman J. and Shing Y., J. Biol. Chem., 267, 10931-4, 1992
    98. Pettet G., Chaplain M. A., McElwain D. L. and Byrne H. M., Proc. R. Soc. B-Biol. Sci., 263, 1487-93, 1996
    99. Breier G., Placenta 21 Suppl. A, S11-15, 2000
    100. Jaffe R. B., Semin. Perinatol., 24, 79-81, 2000
    101. Hanahan D., Christofori G., Naik P. and Arbeit J., Eur. J. Cancer, 32, 2386-93, 1996
    102. Folkman J., N. Engl. J. Med., 285, 1182-6, 1971
    103. Pluda J. M. and Parkinson D. R., Cancer, 78, 680-7, 1996
    104. Folkman J. and Shing Y., J. Biol. Chem., 267, 10931-4, 1992
    105. Zetter B. R., Annu. Rev. Med., 49, 407-24, 1998
    106. Stamenkovic I., Semin. Cancer Biol., 10, 415-33, 2000
    107. Curran S. and Murray G. I., Eur. J. Cancer, 36, 1621-30, 2000
    108. Jackson C. J. and Nguyen M., Int. J. Biochem. Cell Biol., 29, 1167-77, 1997
    109. Dumas V., Kanitakis J., Charvat S., Euvrard S., Faure M. and Claudy A., Anticancer Res., 19, 2929-38, 1999
    110. Duffy M. J., Maguire T. M., Hill A., McDermott E. and O'Higgins N., Breast Cancer Res., 2, 252-7, 2000
    111. Folkman J., Klagsbrun M., Science, 235, 442-7, 1987
    112. Taylor S. and Folkman J., Nature, 297: 307-312, 1982
    113. Ingber D., Proc. Natl. Acad. Sci. U. S. A., 87, 3579-83, 1990
    114. Good D. J., Polverini P. J. and Rastinejad F., Proc. Natl. Acad. Sci. U. S. A., 87, 6624-8, 1990
    115. Sheibani N. and Frazier W. A., Proc. Natl. Acad. Sci. U. S. A., 92, 6788-92, 1995
    116. Weinstat-Saslow D. L., Zabrenetzky V. S., VanHoutte K., Frazier W. A. and Oberts D. D., Cancer Res., 54, 6504-11, 1994
    117. Campbell S.C., Volpert O.V. and Ivanovich M., Cancer Res., 58, 1298-304, 1998
    118. Hori A., Sasada R., Matsutani E., Naito K., Sakura Y., Fujita T. and Kozai Y., Cancer Res., 51, 6180-814, 1991
    119. Kim K. J., Li B., Winer J., Armanini M., Gillett N., Phillips H. S. and Ferrara N., Nature, 362, 841-4, 1993
    120. Watson S. A., Morris T. M., Robinson G., Crimmin M. J., Brown P. D. and Hardcastle J. D., Cancer Res., 55, 3629-33, 1995
    121. Boehm T., Folkman J., Browder T. and O'Reilly M.S., Nature, 390, 404-407, 1997
    122. O’Reilly M. S., Holmgren L., Shing Y., Chen C., Rosenthal R. A., Moses M., Lane W. S., Cao Y., Sage E. H. and Folkman J., Cell, 79, 315-28, 1994
    123. Brock C. S. and Lee S. M., Eur. Resp. J., 19, 557-70, 2002
    124. Folkman J., Exp. Cell Res., 312, 594-607, 2006
    125. Ponnazhagan S., Mahendra G., Kumar S., Shaw D. R., Stockard C. R., Grizzle W. E. and Meleth S., Cancer Res., 64, 1781-7, 2004
    126. Raikwar S. P., Temm C. J., Raikwar N. S., Kao C., Molitoris B. A. and Gardner T. A., Mol. Ther., 12, 1091-100, 2005
    127. Li X., Raikwar S. P., Liu Y. H., Lee S. J., Zhang Y. P., Zhang S., Cheng L., Lee S. D., Juliar B. E. and Gardner T. A., Mol. Cancer Ther., 5, 676-84, 2006
    128. Friedmann T. and Roblin R., Science, 175, 949, 1972
    129. Anderson W. F., Nature, 392, 25, 1998
    130. Verma I. M. and Somia N., Nature, 389, 239, 1997
    131. Blaese R. M., Culver K. W., Miller A. D., Carter C. S., Chiang Y. and Tolstoshev P., Science, 270, 475, 1995
    132. Duncan J. E., Whitsett J. A. and Horowitz A. D., Hum. Gene Ther., 8, 431-8, 1997
    133. Ernst N., Ulrichsko¨tter S., Schmalix W. A. and Rosenacker J., J. Gene. Med., 1, 331-40, 1999
    134. Hsiue G. H., Chiang H. Z. and Wang C. H., Bioconjugate Chem., 17, 781-6, 2006
    135. http://www.zmbh.uni-heidelberg.de/bujard/reporter/pUHC13-3.html
    136. http://www.itsbio.co.kr/main/goods_view.php?category2=58&no=122
    137. http://ocw.mit.edu/courses/biological-engineering/20-109-laboratory-fundamentals-in-biological-engineering-fall-2007/labs/transfection/
    138. Bae Y. H. and Kim S. W., Nature, 354, 2913, 1991
    139. Marjo M., Pharmaceutical Sci., 2007
    140. Huxley H. E. and ZUBAY G., J. Biophy. Biochem. Cytol., 11, 1961
    141. Brock C. S. and Lee S. M., Eur. Resp. J., 19, 557-70, 2002
    142. Folkman J., Exp. Cell Res., 312,594-607, 2006
    143. Sun X., Qiao H., Jiang H., Zhi X., Liu F., Wang J., Liu M., Dong D., Kanwar J. R. and Xu R., Cancer Gene Ther., 12, 35-45, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE