簡易檢索 / 詳目顯示

研究生: 張勁淳
Ching-Tsun Chang
論文名稱: 利用奈米結構增加免標定干涉式光纖感測器之靈敏度
Sensitivity Enhancement of Fiber-Optic Interferometry Biosensor for Label-Free Detection
指導教授: 曾繁根
Fang-Gang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 84
中文關鍵詞: 生物感測器免標定即時體內檢測極限奈米結構干涉術
外文關鍵詞: Biosensor, Label-Free, Real-Time, In-Vivo, Detection Limit, Nano-Structure, Interferometry
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一個能夠提供體內即時檢測的感測器不僅可以幫助疾病的檢測,還可以成為醫學和生物研究上一個強而有力的工具。法布里-珀羅干涉式光纖生物感測器在前人的研究中被證實是一個可以即時檢測的感測器,而且有潛力進行體內檢測。
    發展中的法布里-珀羅干涉式光纖生物感測器具有相當程度的靈敏度,但是有鑑於醫學和生物研究中生物指標的微量性,以及某些特定研究中生物指標變化的快速性,靈敏度更高、反應更快速的感測器一直是各研究團隊一項重要的研究議題。
    本論文利用奈米結構增加感測器的反應面積,成功的提高了感測器的靈敏度,並且在免疫球蛋白的檢測上將檢測極限向下改善了一個數量級,達到了1ng/mL的感測極限濃度。除此之外,奈米結構的使用使得原本需要透過標定奈米金球以進行三明治檢測法的感測器成為一個能夠進行免標定檢測的感測器


    目錄 摘要 I 1.簡介 1 1.1.前言 1 1.2.動機與概念 2 2.理論 4 2.1.光學的基本概念 4 2.2.介面上的反射與折射 6 2.3.干涉 8 2.4.單層薄膜的干涉 10 3.文獻回顧 13 3.1.干涉式感測器 13 3.2.感測器介面感受器固定量提昇 18 3.2.感測器介面感受器活性提昇 28 4.實驗 34 4.1.實驗材料與儀器 34 4.1.1.實驗材料 34 4.1.2.實驗儀器 37 4.1.2.1.螢光掃描機 37 4.2.實驗量測系統 39 4.3.實驗設計 40 4.3.1.法布里-珀羅干涉儀共振腔長度調控 40 4.3.1.1.圖形設計 40 4.3.1.2.製程流程 42 4.3.2.利用奈米結構增加感測器介面一級抗體固定量 45 4.3.2.1.製程流程 45 4.3.2.2.量測設計與流程 47 4.3.2.3.光纖頂自組裝奈米柱結構的製作 49 4.3.2.4.自組裝分子系統的選擇 56 4.3.2.5.標定與免標定 61 5.結果與討論 64 5.1.法布里-珀羅干涉儀共振腔長度控制 64 5.2.利用奈米結構增加感測器介面一級抗體固定量 70 6.結論 79 參考資料 82

    [1] G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, "SU-8 MEMS Fabry-Perot pressure sensor," Sensors and Actuators a-Physical, vol. 138, pp. 52-62, Jul 20 2007.
    [2] F. J. Arregui, K. L. Cooper, Y. J. Liu, I. R. Matias, and R. O. Claus, "Optical fiber humidity sensor with a fast response time using the ionic self-assembly method," Ieice Transactions on Electronics, vol. E83c, pp. 360-365, Mar 2000.
    [3] F. J. Arregui, Y. J. Liu, I. R. Matias, and R. O. Claus, "Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method," Sensors and Actuators B-Chemical, vol. 59, pp. 54-59, Oct 5 1999.
    [4] I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, "ESA-based in-fiber nanocavity for hydrogen-peroxide detection," Ieee Transactions on Nanotechnology, vol. 4, pp. 187-193, Mar 2005.
    [5] T. Yuan-Tai, W. Yi-Chien, Y. Chung-Shi, A. M.-C. W. Mu-Chun Wang, and A. F.-G. T. Fan-Gang Tseng, "Gold-nanoparticle enhanced in-situ immunosensor based on fiber-optical Fabry-Perot interferometry," in Nanotechnology, 2005. 5th IEEE Conference on, 2005, pp. 845-848 vol. 2.
    [6] V. V. Doan and M. J. Sailor, "Luminescent Color Image Generation on Porous Silicon," Science, vol. 256, pp. 1791-1792, Jun 26 1992.
    [7] V. S. Y. Lin, K. Motesharei, K. P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A porous silicon-based optical interferometric biosensor," Science, vol. 278, pp. 840-843, Oct 31 1997.
    [8] K. P. S. Dancil, D. P. Greiner, and M. J. Sailor, "A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface," Journal of the American Chemical Society, vol. 121, pp. 7925-7930, Sep 1 1999.
    [9] J. C. Lee, J. Y. An, and B. W. Kim, "Application of anodized aluminium oxide as a biochip substrate for a Fabry-Perot interferometer," Journal of Chemical Technology and Biotechnology, vol. 82, pp. 1045-1052, Nov 2007.
    [10] P. I. Nikitin, B. G. Gorshkov, M. V. Valeiko, and S. I. Rogov, "Spectral-phase interference method for detecting biochemical reactions on a surface," Quantum Electronics, vol. 30, pp. 1099-1104, Dec 2000.
    [11] P. I. Nikitin, M. V. Valeiko, and B. G. Gorshkov, "New direct optical biosensors for multi-analyte detection," Sensors and Actuators B-Chemical, vol. 90, pp. 46-51, Apr 20 2003.
    [12] C. W. Kuo, J. Y. Shiu, and P. L. Chen, "Size- and shape-controlled fabrication of large-area periodic nanopillar arrays," Chemistry of Materials, vol. 15, pp. 2917-2920, Jul 29 2003.
    [13] H. E. Jeong, S. H. Lee, P. Kim, and K. Y. Suh, "Stretched polymer nanohairs by nanodrawing," Nano Letters, vol. 6, pp. 1508-1513, Jul 12 2006.
    [14] M. T. Northen and K. L. Turner, "Batch fabrication and characterization of nanostructures for enhanced adhesion," Current Applied Physics, vol. 6, pp. 379-383, Jun 2006.
    [15] C. Ming-Hung, H. Tsung-Hsing, C. Yun-Ju, A. P.-H. C. Po-Hung Chen, and A. F.-G. T. Fan-Gang Tseng, "The Preparation of Self-formed PDMS Nanostructures by RIE Etching," in Nano/Micro Engineered and Molecular Systems, 2007. NEMS '07. 2nd IEEE International Conference on, 2007, pp. 977-980.
    [16] D. S. Kim, H. U. Lee, N. H. Kim, K. H. Lee, D. W. Cho, and T. H. Kwon, "Fabrication of microchannel containing nanopillar arrays using micromachined AAO (anodic aluminum oxide) mold," Microelectronic Engineering, vol. 84, pp. 1532-1535, May-Aug 2007.
    [17] B. Lu, M. R. Smyth, and R. OKennedy, "Oriented immobilization of antibodies and its applications in immunoassays and immunosensors," Analyst, vol. 121, pp. R29-R32, Mar 1996.
    [18] W. Lee, B. K. Oh, Y. M. Bae, S. H. Paek, W. H. Lee, and J. W. Choi, "Fabrication of self-assembled protein A monolayer and its application as an immunosensor," Biosensors & Bioelectronics, vol. 19, pp. 185-192, Nov 30 2003.
    [19] W. Lee, D. B. Lee, B. K. Oh, W. H. Lee, and J. W. Choi, "Nanoscale fabrication of protein A on self-assembled monolayer and its application to surface plasmon resonance immunosensor," Enzyme and Microbial Technology, vol. 35, pp. 678-682, Dec 1 2004.
    [20] J. M. Fowler, M. C. Stuart, and D. K. Y. Wong, "Self-assembled layer of thiolated protein G as an immunosensor scaffold," Analytical Chemistry, vol. 79, pp. 350-354, Jan 1 2007.
    [21] Y. M. Bae, B. K. Oh, W. Lee, W. H. Lee, and J. W. Choi, "Study on orientation of immunogrlobulin G on protein G layer," Biosensors & Bioelectronics, vol. 21, pp. 103-110, Jul 15 2005.
    [22] B. K. Oh, W. Lee, B. S. Chun, Y. M. Bae, W. H. Lee, and J. W. Choi, "Surface plasmon resonance immunosensor for the detection of Yersinia enterocolitica," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 257-58, pp. 369-374, May 5 2005.
    [23] B. K. Oh, W. Lee, Y. K. Kim, W. H. Lee, and J. W. Choi, "Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi," Journal of Biotechnology, vol. 111, pp. 1-8, Jul 1 2004.
    [24] E. Briand, C. Gu, S. Boujday, M. Salmain, J. M. Herry, and C. M. Pradier, "Functionalisation of gold surfaces with thiolate SAMs: Topography/bioactivity relationship - A combined FT-RAIRS, AFM and QCM investigation," Surface Science, vol. 601, pp. 3850-3855, Sep 15 2007.
    [25] E. Briand, M. Salmain, C. Compere, and C. M. Pradier, "Immobilization of Protein A on SAMS for the elaboration of immunosensors," Colloids and Surfaces B-Biointerfaces, vol. 53, pp. 215-224, Dec 1 2006.
    [26] E. Briand, M. Salmain, C. Compere, and C. M. Pradier, "Anti-rabbit immunoglobulin G detection in complex medium by PM-RAIRS and QCM Influence of the antibody immobilisation method," Biosensors & Bioelectronics, vol. 22, pp. 2884-2890, Jun 15 2007.
    [27] E. Briand, M. Salmain, J. M. Henry, H. Perrot, C. Compere, and C. M. Pradier, "Building of an immunosensor: How can the composition and structure of the thiol attachment layer affect the immunosensor efficiency?," Biosensors & Bioelectronics, vol. 22, pp. 440-448, Sep 15 2006.
    [28] K. Bonroy, F. Frederix, G. Reekmans, E. Dewolf, R. De Palma, G. Borghs, P. Declerck, and B. Goddeeris, "Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers," Journal of Immunological Methods, vol. 312, pp. 167-181, May 30 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE