研究生: |
康家瑋 Kang, Chia Wei |
---|---|
論文名稱: |
可調控孔隙之高生物相容性幾丁聚醣/褐藻膠層核奈米球體應用於癌症治療 CHITOSAN-COATED ALGINATE NANOPARTICLES WITH TUNNABLE PORE SIZE FABRICATE BY ELECTROSPRAY AS A MULTIPLE DRUG CARRIER |
指導教授: |
曾繁根
Tseng, Fan Gang 楊重熙 Yang, Chung Shi |
口試委員: |
薛燕婉
Hsueh, Yen Wan 葉秩光 Yeh, Chih Kuang |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 硼中子捕獲治療 、褐藻膠 、幾丁聚醣 、電噴灑 、硼酸 |
外文關鍵詞: | BNCT, alginate, chitosan, electrospray, boric acid |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在已發展國家中,癌症為造成人類死亡的主要原因之一,因此目前在對於癌症的治療發展是非常迫切且必要的。癌症的治療分為非常多種,其中最常見的就是化學療程、放射治療、標靶藥物治療,在大部分的療程都會造成人體的正常組織的傷害。因此有許多研究開始使用奈米顆粒作為藥物載體,因奈米顆粒可保護藥物,且因腫瘤附近血管不正常之增生,且內皮細胞排列不緊密,因此會形成結構缺陷,而此血管間隙會依腫瘤種類不同範圍大概為100~780nm,可使尺寸在100~200nm的奈米顆粒進入腫瘤細胞,進而減少癌症治療上對於人體的傷害,因此本研究設計一可調控殼層孔洞大小之奈米藥物載體,具應用於多種癌症治療方式之潛力,而在本研究中主要應用於前驅藥物治療(directed enzyme prodrug therapy)以及硼中子捕獲治療(Boron Neutron Capture Therapy)。
在前驅藥物治療中,利用奈米載體包覆酵素,且調控載體孔洞尺寸介於酵素及前驅藥物之間,再藉由EPR effect 而聚集於腫瘤附近的血管中,之後再投入前驅藥物使其與奈米載體內的酵素反應而形成具有毒性的藥物,進而殺死腫瘤細胞。
目前硼中子捕獲治療主要使用之含硼藥物為boronophenylalanine (BPA), sodium borocaptate (BSH) 以及硼酸,其中BPA之結構與腫瘤之必需氨基酸Phenylalanine結構類似,因此可被腫瘤吸收,但在近年來研究發現此藥物不僅會被腫瘤吸收,也會被一般腦細胞吸收,造成一般腦細胞之損害;BSH為另一常用之含硼藥物,但其於癌細胞之留存濃度不高;硼酸一般被認為在人體內擴散無特徵分佈,因此常被作為含硼藥物測量之控制組。現今硼中子捕獲治療所遇到最大的貧頸為含硼藥物無法有效的聚集於病灶,使得腫瘤細胞與一般細胞之硼濃度比(T/N ratio)無法提高,因此本研究目的及為設計一含硼藥物之奈米藥物載,使含硼藥物藉由奈米藥物載體聚集於腫瘤,提升T/N ratio。
Cancer is the first leading cause of death in developed countries and the second one in developing countries, accounting for around 13% of all deaths in 2008. Conventional cancer therapy, chemotherapy, the agents are distributed non-specifically where they affect both normal and cancerous cells. Nanoparticles drug delivery carriers, by using both passive and active targeting strategies, can enhance the intracellular concentration of drugs in cancer cells while avoiding toxicity in normal cells.
In previous researches, nanoparticles drug delivery carriers focus more on directly chemo drug carrying and delivering, however, the leakage of drug during circulation and unwanted organ/tissue targeting/accumulating pose serious side effects on the therapy [3]. Therefore, instead of carrying cancer drug directly, by carrying enzyme for directed enzyme prodrug therapy (DEPT) or boric acid for BNCT in demand may solve the aforementioned issues. Because in DEPT enzymes are caged and protected inside the nanoparticles for digesting non-toxic pre-drug into cancer drug and then released into tumor cite by diffusion and in BNCT alpha particles have high linear energy transfer and short path lengths (5-9um), in terms of theory, the boron-10-loaded drugs are accumulated in tumor cells that supply a selective way to destroy malignant cells and have little effect on normal cells.
In this study, alginate-based nanoparticles was employed to carry boric acid for its good biocompatibility and diffusivity. To enhance the protection of the drug being attacked from immune system including macrophage and antibodies but not deteriorate the drug diffusion properties too much, chitosan were engineered to coating on the alginate particle surface as a tunable pore size shell. Most importantly, the fabrication processes designed in this study are both aqueous base with enzyme compatibility.
Refference
[1]. Wang, A. Z., Langer, R. & Farokhzad, O. C. Nanoparticle delivery of cancer
drugs. Annu. Rev. Med. (2012): 63, 185–198.
[2]. Zhao, Z., Chen, T., Wang, L., Li C., Fu, T. & Tan, W. Nanotechnology in Therapeutics. Nanomedicine. (2012): 7(8), 1253-1271.
[3]. Noble GT, Stefanick JF, Ashley JD, et al: Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. (2014): 32, 32–45
[4]. Cobb, L. M. "Intratumour factors influencing the access of antibody to tumour cells." Cancer Immunology, Immunotherapy 28.4 (1989): 235-240.
[5]. Jain, Rakesh K. "Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors." Cancer research 50.3 Supplement (1990): 814s-819s.
[6]. Pirker, R. Immunotoxins against solid tumors. J Cancer Res Clin Oncol. (1988): 114:385–393
[7]. Ghose, Tarun I., A. Huntley Blair, and Padmaja N. Kulkarni. "Preparation of antibody-linked cytotoxic agents." Methods in enzymology 93 (1982): 280-333.
[8]. Roth, Jack A., and Richard J. Cristiano. "Gene therapy for cancer: what have we done and where are we going?." Journal of the National Cancer Institute 89.1 (1997): 21-39.
[9]. Löhr, M., et al. "Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cytochrome P450." Gene therapy 5.8 (1998): 1070-1078.
[10]. Weyel, D., et al. "Secreted human ß-glucuronidase: a novel tool for gene-directed enzyme prodrug therapy." Gene therapy 7 (2000): 224-231.
[11]. Satchi, R., T. A. Connors, and R. Duncan. "PDEPT: polymer-directed enzyme prodrug therapy." British journal of cancer 85.7 (2001): 1070.
[12]. Barth, Rolf F., et al. "Boron neutron capture therapy of cancer: current status and future prospects." Clinical Cancer Research 11.11 (2005): 3987-4002.
[13]. Lin, Sy-Yu, et al. "Therapeutic Efficacy for Hepatocellular Carcinoma by Boric Acid-mediated Boron Neutron Capture Therapy in a Rat Model." Anticancer research 33.11 (2013): 4799-4809.
[14]. Liao, A. H., et al. "Biodistribution of phenylboric acid derivative entrapped lipiodol and 4-borono-2-18 F-fluoro-l-phenylalanine-fructose in GP7TB liver tumor bearing rats for BNCT." Applied Radiation and Isotopes 68.3 (2010): 422-426.
[15]. Suzuki, Minoru, et al. "Intra-arterial administration of sodium borocaptate (BSH)/lipiodol emulsion delivers B-10 to liver tumors highly selectively for boron neutron capture therapy: experimental studies in the rat liver model." International Journal of Radiation Oncology* Biology* Physics 59.1 (2004): 260-266.
[16]. Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU report 44, 1989.
[17]. A. J. B. John, R. Lamarsh, Introduction to nuclear engineering: Prentice Hall, 2001
[18]. Suzuki, Minoru, et al. "First attempt of boron neutron capture therapy (BNCT) for hepatocellular carcinoma." Japanese journal of clinical oncology 37.5 (2007): 376-381.
[19]. H. .E. Johns and J. R. Cunningham, The physics of radiology: Charles C. Thomas, 1964.
[20]. Barth, Rolf F., et al. "Boron neutron capture therapy for cancer. Realities and prospects." Cancer 70.12 (1992): 2995-3007.
[21]. Snyder, H. R., Albert J. Reedy, and Wm J. Lennarz. "Synthesis of Aromatic Boronic Acids. Aldehydo Boronic Acids and a Boronic Acid Analog of Tyrosine1." Journal of the American Chemical Society 80.4 (1958): 835-838.
[22]. Liver Cancer Study Group of Japan. "The general rules for the clinical and pathological study of primary liver cancer." The Japanese journal of surgery 19.1 (1989): 98-129.
[23]. Yokoyama, Kunio, et al. "Pharmacokinetic study of BSH and BPA in simultaneous use for BNCT." Journal of neuro-oncology 78.3 (2006): 227-232.
[24]. Kreimann, Erica L., et al. "The Hamster Cheek Pouch as a Model of Oral Cancer for Boron Neutron Capture Therapy Studies Selective Delivery of Boron by Boronophenylalanine." Cancer research 61.24 (2001): 8775-8781.
[25]. Heber, Elisa, et al. "Biodistribution of GB-10 (Na210B10H10) compound for boron neutron capture therapy (BNCT) in an experimental model of oral cancer in the hamster cheek pouch." Archives of oral biology 49.4 (2004): 313-324.
[26]. Garabalino, Marcela A., et al. "Biodistribution of sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) in an oral cancer model." Radiation and environmental biophysics 52.3 (2013): 351-361.
[27]. Soloway, A. H., H. Hatanaka, and M. A. Davis. "Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds." Journal of medicinal chemistry 10.4 (1967): 714-717.
[28]. Dordas, Christos, and Patrick H. Brown. "Permeability and the mechanism of transport of boric acid across the plasma membrane of Xenopus laevis oocytes." Biological trace element research 81.2 (2001): 127-139.
[29]. Dordas, Christos, Maarten J. Chrispeels, and Patrick H. Brown. "Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots." Plant Physiology 124.3 (2000): 1349-1362.
[30]. Lin SY, Chen WL, Lin CJ, Peir JJ, Liu HM, Liao JW, Lin SL, Lin YC and Chou FI: Intestinal complications of boron neutron capture therapy for orthotropic hepatoma in rats. 6th Young Researchers Boron Neutron Capture Therapy Meeting, YBNCT-31, Hsinchu, December 4-8, 2011
[31]. Maruyama, Kazuo, et al. "Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT)." Journal of controlled release 98.2 (2004): 195-207.
[32]. Koganei, Hayato, et al. "Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers." Bioconjugate chemistry 24.1 (2012): 124-132.
[33]. Morales-Cruz, Moraima, et al. "Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres." Results in pharma sciences 2 (2012): 79-85.
[34]. Wu, Y., Duong, A., Lee, L. J. & Wyslouzil, B.E. Electrospray Production of Nanoparticles for Drug/Nucleic Acid Delivery. The Delivery of Nanoparticles, Chap 10.
[35]. Almería, B.; Gomez, A. Electrospray synthesis of monodisperse polymer particles in a broad (60 nm−2 μm) diameter range: guiding principles and formulation recipes. J. Colloid Interface Sci. (2014): 417, 121−130
[36]. Gu, Z.; Aimetti, A. A.; Wang, Q.; Dang, T. T.; Zhang, Y.; Veiseh, O.; Cheng, H.; Langer, R. S.; Anderson, D. G. Injectable Nano-Network for Glucose-Mediated Insulin Delivery. ACS Nano. (2013): 7, 4194–4201
[37]. Tonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm (2012): 28:621–30
[38]. Park, Hongkwan, et al. "Fabrication of cross-linked alginate beads using electrospraying for adenovirus delivery." International journal of pharmaceutics 427.2 (2012): 417-425.
[39]. Biswas, S., Chattopadhyay, M., Sen, K.K., Saha, K.M. Development and characterization of alginate coated low molecularweight chitosan nanoparticles as new carriers for oral vaccinedelivery in mice. Carbohydr. Polym. (2015): 121, 403–410