簡易檢索 / 詳目顯示

研究生: 鄭宇尊
Cheng, Yu-Tsun
論文名稱: 超高真空樣品經乾燥曝氣之熱釋氣研究
The study of thermal outgassing on ultra high vacuum system with venting extremely dry nitrogen
指導教授: 陳俊榮
Chen, June-Rone
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 113
中文關鍵詞: 真空熱釋氣表面覆蓋黏滯係數
外文關鍵詞: vacuum, thermal outgassing, surface coverage, sticking coefficient
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為探討鋁合金與鈦之真空腔,經各種乾燥氮氣曝氣後之釋氣率情形。為了有效阻絕環境之水氣而得到較低的釋氣率,實驗中比較了多種乾燥曝氣實驗條件,並且探討真空表面之相關狀況。本實驗也採用紅外光表面分析,探討熱氮氣與冷氮氣對於樣品表面已吸附之水氣的吹離效果,以及利用表面覆蓋模型計算得到各參數進行比對。由各種不同曝氣之結果顯示,以手套箱保護之曝氣過程(曝氣溼度1.3ppb)具有最低之釋氣率,鋁合金真空腔於該情況下抽氣1小時後之釋氣率q1為1.1x10^(-11)mbar.L/s.cm2,於10小時後之釋氣率q10為1.6x10^(-12)mbar.L/s.cm2,這些值比一般條件曝氣(空氣)所得之q1及q10小約100倍及80倍,顯示極乾燥曝氣之效果。而鈦真空腔於相同之手套箱保護曝氣,釋氣率為鋁合金3.4倍,殘餘氣體水氣訊號為鋁合金之3.3倍,顯示乾燥曝氣對鋁合金有較佳之效果。由表面覆蓋模型計算結果顯示,各曝氣實驗之覆蓋度約在10^12~10^15 molecules/cm2之間,黏滯係數約在10^(-5)級數。而在極乾燥曝氣實驗或空白實驗中,鋁合金與鈦釋氣率曲線發現存在和時間平方成反比(t^(-2))之成分,表示極乾燥處理後,表面狀況異於一般曝氣之表面。而由紅外光光譜分析實驗中,證實利用乾燥氮氣氣流能將已吸附於樣品表面之水氣吹離,但是,冷氮氣與熱氮氣兩者無顯著差異。


    Thermal outgassing rates of aluminum and titanium chambers, which were vented to dry nitrogen atmospheres with different conditions, were measured. The vacuum surface states were compared with different venting conditions in order to obtain lower outgassing rates. Both hot and cold nitrogen gas purging dried water vapor, which was adsorbed on surface, were compared by FT-IR. The surface coverage model was also discussed.
    The results showed that vented by dry nitrogen (1.3 ppb humidity) and protected the vacuum chamber from atmosphere environment by glove box, had the lowest outgassing rate. The outgassing rates of aluminum chamber at the 1st and 10th hour were showed as q1=1.1x10^(-11) mbar.L/s.cm2 and q10=1.6x10^(-12) mbar.L/s.cm2, which were 100 and 80 times relatively lower than general venting to air. In the same condition, outgassing rate and H2O residual gas signal of titanium chamber were 3.4 and 3.3 times relatively higher than aluminum chamber. It indicated that, aluminum chamber had a better result, when venting to dry nitrogen. In surface model calculating, the surface coverage was from 10^12 to 10^15 molecules/cm2, and the sticking coefficient was in the order of 10^(-5). The outgassing rate was inversed proportional to the square of time (t^(-2)) by venting with extremely dry nitrogen gas, the results showed that the surface state was much different from regular. In FT-IR experiment, both hot and cold nitrogen gases had the same ability of blowing the water vapor which was adsorbed on the surface.

    第一章、 引言-----------------------------------------1 第二章、 原理-----------------------------------------5 一、熱釋氣基本原理------------------------------------5 二、熱釋氣測量原理------------------------------------7 三、吸附等溫線(isotherm)------------------------------8 四、表面吸附參數之計算模型---------------------------10 五、富利葉轉換紅外光原理-----------------------------13 第三章、實驗步驟與結果-------------------------------16 一、實驗樣品-----------------------------------------16 二、熱釋氣測量實驗系統-------------------------------17 三、熱釋氣實驗步驟與結果-----------------------------19 A. 背景值量測----------------------------------------19 B. 管內以流動之乾燥氮氣之曝氣實驗--------------------23 C. 常溫氮氣與熱氮氣實驗------------------------------26 D. 以手套箱保護之實驗--------------------------------28 四、紅外光光譜實驗步驟與結果-------------------------32 1. 乾燥氮氣曝氣實驗----------------------------------33 2. 曝水實驗------------------------------------------34 第四章、討論-----------------------------------------36 一、各項措施之效果比較-------------------------------36 二、鋁合金與鈦比較-----------------------------------41 三、表面吸附模型之討論-------------------------------44 四、釋氣率斜率t^(-2)之討論---------------------------46 五、系統與誤差討論-----------------------------------48 第五章、結論-----------------------------------------51 參考文獻---------------------------------------------53 表---------------------------------------------------59 圖---------------------------------------------------71 附錄、殘餘氣體分析儀的{19}污染判定------------------112

    1. R. T. Bayard and D. Alpert, Extension of low pressure range of the ionization gauge, Rev. Sci. Instr. 21, 571-572(1950).
    2. H. Ishimaru, All-aluminum-alloy ultrahigh vacuum system for a large-scale electron-positron collider, J. Vac. Sci. Technol. A2, 1170-1175(1984).
    3. P. A. Redhead, J. P. Hobson, E. V. Kornelsen, The Physical Basis of Ultrahigh Vacuum, American Institute of Physics,3rd ed., New York (1993).
    4. 劉遠中,王德正,謝澄銀,陳定全,徐武雄,陳俊榮,曾湖興,許憲能,超高真空系統的研究(二),核子科學 22, 272-276 (1985).
    5. J. R. Chen, K. Narushima and H. Ishimaru, Thermal outgassing from aluminum alloy vacuum chambers, J. Vac. Sci. Technol. A3, 2188-2191(1985).
    6. S. P. Ju and C. I. Weng, Investigation of the local structure variance of water molecules in laser-induced thermal desorption process, Appl. Surf. Sci. 230, 179-190(2004).
    7. General Remarks of Practical Vacuum Technology, Editorial Committee of General Remarks of Practical Vacuum Technology, Japan, 1990.
    8. H. F. Dylla, D. M. Manos and P. M. LaMarche, Correlation of outgassing of stainless steel and aluminum with various surface treatments, J. Vac. Sci. Technol. A11, 2623-2636 (1993).
    9. J. F. O’Hanlon, A User’s Guide to Vacuum Technology, 3rd ed., John Wiley & Sons, New Jersey (2003).
    10. Y. Hori and M. Kobayashi, Consideration of a non-baked start-up of a synchrotron light source, Vacuum 47, 621-624 (1996).
    11. CRC Handbook of Chemistry and Physics, 74th ed., p.9 1993~1994.
    12. A. Itoh, Y. Ishikawa and T. Kawabe, Reduction of outgassing from stainless-steel surface by glow discharge cleaning, J. Vac. Sci. Technol. A6, 2421-2425(1988).
    13. R. A. Nevshupa, J. L. de Segovia, Outgassing from stainless steel under impact in UHV, Vacuum 64, 425-430(2003).
    14. S. S. Inayoshi , S. Tsukahara and A. Kinbara, Decrease of water vapor desorption by Si film coating on stainless steel, Vacuum 53, 281-284(1999).
    15. K. Tatenuma, T. Momose and H. Ishimaru, Quick acquisition of clean ultrahigh vacuum by chemical process technology, J. Vac. Sci. Technol. A11, 1719-1724(1993).
    16. Y. C. Liu, J. R. Huang, C. Y. Wu and J. R. Chen, Thermal outgassing study on aluminum surfaces, Vacuum 44, 435-437 (1993).
    17. J. R. Chen, J. R. Huang, G. Y. Hsiung, T. Y. Wu and Y. C. Liu, Outgassing behavior on aluminum surfaces: Water in vacuum system, J. Vac. Sci. Technol. A12, 1750-1754(1994).
    18. J. R. Chen and Y. C. Liu, Thermal Outgassing From Stainless Steel Vacuum Chamber, Chin. J. Phys. 24, 29-36(1986).
    19. 陳俊榮,劉遠中,鋁合金超高真空材料釋氣之研究,科學發展月刊,第十五卷, 715-735(1987)
    20. 劉遠中,黃俊儒,吳宗岳,陳俊榮,以不同溼度之氣體研究鋁合金表面熱釋氣,真空科技,第五卷, 8-13(1992).
    21. H. Mizuno and G. Horikoshi, Proceeding of the Fifth Meeting on UHV Techniques for Accelerators and Storage Rings, KEK Report No. 84-11, (1984).
    22. 黃俊儒,鋁合金與不鏽鋼表面釋氣率之研究,碩士論文,國立清華大學物理系,(1992).
    23. 劉亦凡,鋁合金表面經臭氧水清洗之真空釋氣研究,碩士論文,國立清華大學生醫工程與環境科學系,(2006).
    24. A. Roth, Vacuum Technology, 3rd ed., Elsevier Science, Netherlands(1990).
    25. R. J. Elsey, Outgassing of vacuum materials-I, Vacuum 25, 299-306(1975).
    26. 陳俊榮,王端正,陳錦山,劉遠中,利用氣壓增建法測試超高真空系統之研究,真空科技,第二卷, 20-25(1988).
    27. P. A. Redhead, Effects of re-adsorption on outgassing rate measurements, Vacuum 47, 317(1996).
    28. P. A. Redhead, Modeling the pump-down of a reversibly adsorbed phase. I. Monolayer and submonolayer initial coverage, J. Vac. Sci. Technol. A13, 467-475(1995).
    29. P. A. Redhead, Effects of readsorption on outgassing rate measurements, J. Vac. Sci. Technol. A14, 2599-2609(1996).
    30. J. P. Hobson, Desorption of Adsorbed Gas and Re-emission of Gas Previously Pumped by Ionic Pumping, Proceedings of the 2nd International Vacuum Congress, 26-30(1961).
    31. R. G. Greenler, Infrared study of adsorbed molecules on metal surface by reflection techniques, J. Chem. Phys. 44, 310-315(1966).
    32. J. C. Vickerman, Surface Analysis: the Principal Techniques, John Wiley & Sons, New York (1997).
    33. B. J. Barner, M. J. Green, E. I. Saez and R. M. Corn, Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real-time sampling electronics, Anal. Chem. 63, 55-60(1991).
    34. T. Buffeteau, B. Desbat and J. M. Turlet, Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: Experimental procedure and quantitative analysis, Appl. Spectroscopy 45, 380-389(1991).
    35. T. Momose, E. Hayasaka, K. Saitou and K. Nagayama, Surface cleaning aluminum foil with ozone gas, J. Vac. Sci. Technol. A16, 961-963(1998).
    36. T. Momose, Y. Maeda, K. Asano and H. Ishimaru, Surface analysis of carbon on ozone treated metals, J. Vac. Sci. Technol. A13, 515-519(1995).
    37. T. Homma, M. Minato, Y. Itoh, S. Akiya and T. Suzuki, A modified surface of titanium and its vacuum characteristic, Appl. Surf. Sci. 100, 189-192(1996).
    38. Y Tuzi, Y Kurokawa and K Takeuchi, Effect of bake-out on the adsorption kinetics of gases in a vacuum chamber, Vacuum 44, 447-449(1993).
    39. I. Chun, B. Cho and S. Chung, Outgassing rate characteristic of a stainless-steel extreme high vacuum system, J. Vac. Sci. Technol. A14, 2636-2640(1996).
    40. M. Kobayashi, private communication.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE