簡易檢索 / 詳目顯示

研究生: 周佩雯
Chou, Pei Wen
論文名稱: 私人企業之再生能源組合最佳化-以台灣為例
Optimal Combination of Renewable Energies for an Enterprise–A Case of Taiwan
指導教授: 王小璠
Wang, Hsiao Fan
口試委員: 廖崇碩
Liao, Chung Shou
徐昕煒
Hsu, Hsin Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 68
中文關鍵詞: 再生能源能源組合多目標規劃間歇期參數評估
外文關鍵詞: Renewable Energy, Generation Combination, Multi-objective Model, Intermittence, Parameter Evaluation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   台灣政府於100年11月開始實施新能源政策,以「能源安全、穩健減核、低碳環境、邁向無核家園」作為推動能源發展的主軸。政府亦確保在履行國際上的減碳承諾、不限制用電以及維持有效電價等3大原則下,積極實踐節能減碳與穩定供電於發電系統。因此,政府開始鼓勵民間私人企業發展自有的再生能源發電系統,更頒布補助措施鼓勵私人企業將電力回賣給政府。
      本研究建構一兩階段分析模型,為一私人企業在考量再生能源間歇性、環境保護議題及建置成本的基礎上,評估較有利的方案並建構再生能源組合最佳化之發電系統。此分析模型包含一評估再生能源之容量因子的參數評估模型,再將此預測結果代入第二階段的多目標規劃,以利達到成本最小化、環境衝擊最小化以及發電量最大化的目標,進而提供決策者再生能源裝置容量之最佳配比。藉由第一階段所得到之結果,使得多目標規劃之三大目標可以在每月電力供給滿足需求的前提下滿足。
      我們亦提供一台灣例子-國立清華大學說明我們所提出的能源組合最佳化模型。由於實際日照量是根據性能比來訂定,因此在太陽能的評估模型中得出其容量因子與日照量呈現高度正相關的結果。對於風能來說,其容量因子則是與風速三次方根成正比,因此在高風速時會快速的攀升。多目標規劃所得出的最佳能源組合中,由於不同的能源有其不同的碳排放係數,因此能源的外部成本在最後的目標值中佔了不少的比例。最後我們進行敏感度分析討論在不同碳稅之下其能源成本趨勢。


      To achieve the goals of assuring nuclear security, steadily reducing nuclear dependence, creating a low-carbon energy environment and gradually establishing a nuclear-free homeland, an energy policy was implemented by the Taiwanese government in November 2011. In the meantime, the Government actively fulfilled the carbon reduction target and electricity stable supply policy under three major principles of international carbon reduction commitment without restricting electricity usage and with a valid electricity price. Consequently, the Government encourages private enterprises to generate electric power by renewable energy and sell back to the public enterprise.
      This study proposes a two-stage analytical model to support private enterprises in evaluating the possible generation combination of renewable energy while considering the intermittence of renewable energy, environmental protection, generation cost, and given the monthly electricity demand. The model involves a parameter evaluation model developed to determine the capacity factor of renewable energies. A multi-objective model is also proposed to optimize the mixed generation of renewable energies, and minimize the carbon emission at a minimum cost. By substituting the result obtained from parameter evaluation models, the three goals can be achieved under the condition of balancing supply and demand for each month.
      A case study of optimal mixed-generation of renewable energies was carried out at the National Tsing Hua University to illustrate and verify the proposed system. From parameter evaluation of solar energy, it can be observed that because the variation of capacity factor is attributed to performance ratio, the capacity factor and solar irradiance is highly correlated. As regard the wind energy, the capacity factor is proportional to the cube root mean of wind speed, so it will increase very fast respect to the high wind speed. The external cost of energy source remains a specific proportion of total cost in our optimal combination of energy sources, since each energy resource has a different carbon emission coefficient. At last, we perform sensitivity analysis to discuss the cost trend of energy sources under different carbon tax.

    ABSTRACT I 中文摘要 III ACKNOWLEDGEMENT IV FIGURE & TABLE CAPTIONS VIII LIST OF NOTATIONS X CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 4 2.1 ENERGY MANAGEMENT 4 2.1.1 Renewable Energies Development of Enterprise 5 2.1.2 Investment of Power Generation 8 2.1.3 Environmental Protection 10 2.2 EVALUATION METHOD OF RENEWABLE ENERGY 14 2.2.1 Capacity factor of solar energy 15 2.2.2 Capacity factor of wind energy 18 2.3 MULTI-OBJECTIVE METHOD 19 2.4 DISCUSSION AND CONCLUSION 20 CHAPTER 3 MODEL FORMULATION 21 3.1 PROBLEM STATEMENT 21 3.2 FRAMEWORK OF MULTI-OBJECTIVE PROGRAMMING WITH PARAMETER EVALUATION MODEL 21 3.3 PROPOSED MULTI-OBJECTIVE PROGRAMMING WITH PARAMETER EVALUATION MODEL 23 3.3.1 Notations 23 3.3.2 Parameter Evaluation with Probability Distribution Function 25 3.3.3 Multi-objective Model 25 3.3.4 Constraints and Restrictions 27 3.4 DISCUSSION AND CONCLUSION 28 CHAPTER 4 NUMERICAL ILLUSTRATION 29 4.1 BACKGROUND DESCRIPTION 29 4.2 ILLUSTRATION OF PROPOSED PARAMETER EVALUATION MODEL 33 4.2.1 Parameter Evaluation of Solar Energy 33 4.2.2 Parameter Evaluation of Wind Energy 35 4.2.3 Conclusion of Parameter Evaluation Model 37 4.3 ILLUSTRATION OF MULTI-OBJECTIVES MODEL 38 4.3.1 Structure of Goal Programming 38 4.3.2 Output of Renewable Energy Combination 39 4.3.3 Renewable Energy Combination Analysis 42 4.4 SENSITIVITY ANALYSIS 46 CHAPTER 5 CONCLUSION & FUTURE WORK 51 5.1 SUMMARY AND CONCLUSION 51 5.2 FUTURE WORK 52 REFERENCES 53

    Amponsah, N.Y., Troldborg, M., Kington, B., Aalders, I., Hough, R.L., “Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations”, Renewable and Sustainable Energy Reviews, 2014, pp. 461–475
    Arslan, T., Bulut, Y.M., Yavuz A., “Comparative study of numerical methods for determining Weibull parameters for wind energy potential”, Renewable and Sustainable Energy Reviews, 2014, pp. 820–825
    Bilil, H., Aniba, G., Maaroufi, M., “Multiobjective Optimization of Renewable Energy Penetration Rate in Power Systems”, Energy Procedia, 2014, pp.368–375
    Branker, K., Pathak, M. J.M., Pearce, J. M., “A Review of Solar Photovoltaic Levelized Cost of Electricity”, Renewable & Sustainable Energy Reviews, 2011, pp.4470-4482
    Bureau of Energy, Ministry of Economic Affairs, “Rising Green Energy Industry Program”, 2014
    Chen, P.Y., Chen, B.Y., Tsai, P.H., Chen, C.C., “Evaluating the impacts of a carbon tax on imported forest products—evidence from Taiwan”, Forest Policy and Economics, 2015, pp.45-52
    Cheng, H., Huang, W., Zhou, Q., Cai, J., ”Solving fuzzy multi-objective linear programming problems using deviation degree measures and weighted max–min method”, Applied Mathematical Modelling, 2013, pp. 6855–6869
    Filippo, S., Fabio, C.,” Monitoring and checking of performance in photovoltaic plants: a tool for design, installation and maintenance of grid-connected systems”, Renewable Energy, 2013, pp. 722–732
    Ho, Y.F., Chang, C.C., Wei, C.C., Wang, H.L., “Multi-objective programming model for energy conservation and renewable energy structure of a low carbon campus”, Energy and Buildings, 2014, pp.461–468
    International Energy Agency, “World Energy Outlook 2011”, 2011
    International Energy Agency, “Key World Energy Statistics 2013”, 2013
    Islam, M.R., Saidur, R., Rahim, N.A., “Assessment of wind energy potantiality at Kudat and Labuan, “Malaysia using Weibull distribution function”, Energy, 2011, pp. 985–992
    Kwon, S.D., “Uncertainty analysis of wind energy potential assessment”, Applied Energy, 2010, pp. 856–865
    Markvart, T., ”Solar Electricity”, John Wiley & Sons, 1994, pp.5-19
    Milosavljević D.D., Pavlović T.M., Piršl, D.S., ”Performance analysis of A grid-connected solar PV plant in Niš, republic of Serbia”, Renewable and Sustainable Energy Reviews, 2015, pp. 423–435
    Moura, P.S., Almeida, A.T. de., “Multi-objective optimization of a mixed renewable system with demand-side management. Renewable and Sustainable Energy Reviews”, Renewable and Sustainable Energy Reviews, 2010, pp.1461–1468
    Nuclear Energy Agency, “System Effects in Low-carbon Electricity Systems”, Nuclear Energy and Renewables, 2012
    Park, E., Kwon, S.J., “Solutions for optimizing renewable power generation systems at Kyung-Hee University׳s Global Campus, South Korea”, Renewable and Sustainable Energy Reviews, 2016, pp. 439-449
    Pineda, S., Bock, A., “Renewable-based generation expansion under a green certificate market”, Renewable Energy, 2016, pp. 53-63
    Ragab, M., Som, A.K., “A preliminary study of wind power potential in Bahrain”, Renewable Energy, 1993, pp. 67–74
    Ryu, H., Dorjragchaa, S., Kim, Y., Kim, K., “Electricity-generation mix considering energy security and carbon emission mitigation: Case of Korea and Mongolia”, Energy, 2014, pp.1071-1079
    Schell, K.R., Claro, J., Fischbeck, P., “Geographic attribution of an electricity system renewable energy target: Local economic, social and environmental tradeoffs”, Renewable and Sustainable Energy Reviews, 2015, pp.884-902
    Sharafi, M., ELMekkawy, T.Y., “Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach”, Renewable Energy, 2014, pp.67–79
    Shen, J.N., “Unit sizing and economic analysis of an autonomous photovoltaic system”, National Science Council, 2000
    Yeh, T.H., Wang, L., “Capacity factor analysis of wind turbine generators and economic benefit evaluation of wind farms”, Doctoral Dissertation, National Cheng Kung University, 2009
    Zhang, H., Li, L., Zhou, D., Zhou, P., “Political connections, government subsidies and firm financial performance: Evidence from renewable energy manufacturing in China”, Renewable Energy, 2014, pp.330–336
    Bureau of Energy, Ministry of Economic Affairs, 2015
    < http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx>
    Environment Protection Administration Executive Yuan, Taiwan, 2015
    < http://www.epa.gov.tw/mp.asp?mp=epa>
    International Energy Cooperation Website, 2016
    < http://apecenergy.tier.org.tw/index.php>
    National Tsing Hua University, 2014
    < http://nesh.web.nthu.edu.tw/files/11-1021-9305.php?Lang=zh-tw>
    National Tsing Hua University, Environment protection and Occupational safety and Sanitation center, 2016
    < http://nesh.web.nthu.edu.tw/bin/home.php>
    The Swiss Wind Power Data Website, 2016.
    <http://wind-data.ch/tools/powercalc.php?lng=en>
    TECO ECO Business Group, 2016
    < http://eco.teco.com.tw/Modules/Web/Prod.aspx?PROD_ROLES=2>

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE