簡易檢索 / 詳目顯示

研究生: 徐誠駿
論文名稱: 聚乙二醇-聚癸二酸酐與聚乙二醇-聚乳酸共聚物混合微胞於薑黃素之藥物輸送研究
Mixed micelles of methoxy poly(ethylene glycol-b-sebacic anhydride) and methoxy poly(ethylene glycol-b-L-lactic acid) for controlled delivery of curcumin
指導教授: 朱一民
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 95
中文關鍵詞: 混合微胞薑黃素聚癸二酸酐聚乳酸
外文關鍵詞: mixed micelles, curcumin, PSA, PLLA
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薑黃素 (curcumin)是一種多酚類的古老藥材,文獻指出它具有抗癌功效,但它對水的低溶解度與快速代謝兩種特性,造成薑黃素不便於臨床上應用。故使用兩種二團聯兩性共聚物 (di-block copolymer)混合成新穎性混合微胞 (mixed micelles)做為包覆薑黃素的載體。分別以分子量5000與2000 methoxy poly(ethylene glycol) (mPEG)作為親水鏈段,以poly(sebacic anhydride) (PSA)及poly(L-lactic acid) (PLLA)作為疏水鏈段。二團聯兩性共聚物個別以熔融縮合聚合法合成mPEG5000-PSA及開環聚合法合成mPEG2000-PLLA。共聚物性質藉由1H-NMR鑑定兩性共聚物結構、以螢光 (pyrene)測定法求得臨界微胞值 (Critical Micellar Concentration,CMC)、動態光散射 (Dynamic Light Scattering,DLS)測定粒徑並且利用雷射共軛焦顯微鏡 (confocal laser scanning microscope)交叉比對行mixed micelles組成証明。
    實驗結果證實mixed micelles特性介於mPEG5000-PSA micelles與mPEG2000-PLLA micelles之間。穩定度測量在PBS buffer (pH=7.4)環境下,mixed micelles粒徑大小約138.8± 19.56 nm (n=3),24天粒徑變化約為5 nm,穩定效果優於mPEG5000-PSA micelles,呈現良好穩定性。薑黃素包覆效率以λ=420 nm偵測並且發現mixed micelles包覆效率與薑黃素添加含量有關,隨著薑黃素含量增加而減少,最高可達78%。薑黃素因此在水中溶解度最高增加至0.16 mg/ml,相較於未經過micelles包覆溶解度約0.6 μg/ml,溶解度倍增267倍。藥物釋放實驗mixed micelles呈現階段性緩慢釋放,兩週後釋放量約為80%。細胞毒性實驗以HeLa cells作為目標細胞,細胞存活率與薑黃素濃度相關,隨著薑黃素濃度增加細胞吞噬量增加,因此細胞存活率下降。動物實驗顯示,一個月內micelles以靜脈注射施打於大鼠並無造成實驗動物不適。TEM觀察micelles型態,三種micelles皆有核殼型結構 (core/shell)。
    最後,mixed micelles具備多種優勢 (穩定度、包覆效率及藥物釋放),且成功地包覆疏水性藥物薑黃素,徹底改善薑黃素在水溶液的溶解度,增加其應用範圍。適合應用於藥物輸送的領域。


    Curcumin is a natural compound widely used in various therapies, and it has been considered a potential anticancer agent recently. Nevertheless, the clinical application of curcumin is hindered due to its poor water solubility. Mixed micelles as a curcumin encapsulating carrier was developed composed of mPEG5000-PSA (methoxy poly(ethylene glycol-b-sebacic anhydride)) and mPEG2000-PLLA (methoxy poly(ethylene glycol-b-L-lactic acid)). The formation of mixed micelles was prepared by a solvent evaporation method. The character of mixed micelles was measured by 1H-NMR, dynamic light scattering (DLS) and confocal laser scanning microscope.
    Mixed micelles showed good stability in PBS buffer solution (pH=7.4) during 24 days whereas the average size of micelles of mPEG5000-PSA was greater than 200 nm in 2 days. The size of Curcumin-loaded mixed micelles increased with increasing curcumin loading. Encapsulation efficiency of curcumin of mixed micelles presented high level loading (E.E=78%). The water solubility of curcumin was increased to 0.16 mg/ml due to mixed micelles (267 fold increase compared with original solubility of curcumin, 0.6 μg/ml)。The study of drug release showed mixed micelles release curcumin gradually, while mPEG5000-PSA showed large initial burst. Cytotoxicity studies of curcumin-free micelles (mPEG5000-PSA and mPEG2000-PLLA) indicated low cytotoxicity. By contrast, a linear dependency of cytotoxicity was observed with treatment concentration of curcumin. The morphology of mixed micelles was core/shell-like as observed by TEM. In vivo studies showed curcumin-free micelles have no toxicity for rats.
    Finally, mixed micelles are good carriers suitable for controlled drug release system. Curcumin-loaded mixed micelles improve poor water solubility of curcumin dramatically and broaden its range of clinical applications.

    摘要....................................................Ⅰ Abstract................................................Ⅲ 目錄....................................................Ⅴ 圖目錄..................................................Ⅷ 表目錄..................................................Ⅹ 第一章 文獻回顧......................................1 1.1 藥物釋放系統......................................1 1.1.1 藥物控制釋放系統...............................2 1.1.2 靶向藥物釋放系統...............................4 1.2 粒子劑型載作之製備................................6 1.3 載體材料..........................................9 1.3.1 生醫材料................................9 1.3.2 天然高分子.............................10 1.3.3 合成高分子.............................12 1.4 Micelles 發展...............................18 1.5 Mixed micelles發展..........................21 1.6 治療癌症發展史..............................24 1.6.1抗癌藥物薑黃素 (curcumin)...............25 第二章 研究動機與目的...............................27 第三章 實驗架構與用品...............................30 3.1 實驗架構.....................................30 3.2 實驗藥品....................................32 3.3 實驗儀器....................................34 第四章 實驗步驟與方法...............................36 4.1 mPEG5000-PSA二團聯共聚物合成...............36 4.1.1 癸二酸(sebacic acid)酸酐化,preSA.....36 4.1.2 聚乙二醇(mPEG5000-OH)酸化.............37 4.1.3 mPEG5000-PSA二團聯共聚物.............38 4.2 mPEG2000-PLLA二團聯共聚合物合成............39 4.3 合成mPEG5000-PSA-PCEFB三團聯共聚物..........41 4.3.1 p-aminobenzoic acid雙酸化............42 4.3.2 CEFB預聚物...........................42 4.3.3 mPEG5000-PSA-PCEFB三團聯共聚物.......42 4.4 Rh-PEG2000-PLLA二團聯共聚合物合成..........44 4.4.1 Rh-PEG2000-NH2合成...................45 4.4.2 PLLA合成.............................45 4.4.3 Rh-PEG2000-PLLA二團聯共聚合物合成....46 4.5 鑑定材料性質方法............................46 4.6 臨界微胞濃度(critical micelle concentration,CMC)測定...................................................49 4.7 Mixed micelles製備.........................49 4.8 Micelles穩定性實驗..........................50 4.9 藥物包覆效率與藥物釋放實驗..................51 4.10 奈米粒子型態觀測...........................52 4.10.1 TEM觀測.............................52 4.10.2 AFM觀測.............................53 4.11 細胞毒性測試...............................53 4.11.1 細胞培養............................53 4.11.2 細胞存活率 (MTT assay)..............54 4.12 細胞吞噬作用...............................54 4.13 動物實驗...................................55 第五章 結果與討論...................................56 5.1 mPEG5000-PSA團聯共聚物結構鑑定....................56 5.1.1 癸二酸酐預聚物,preSA ................56 5.1.2 聚乙二醇(mPEG5000-OH)酸化.............57 5.1.3 mPEG5000-PSA二團聯共聚合物...........59 5.2 mPEG2000-PLLA二團聯共聚合物結構鑑定........61 5.3 mPEG5000-PSA-PCEFB三團聯共聚物結構鑑定.....62 5.4 臨界微胞濃度測定(CMC).......................64 5.5 Micelles粒徑比較...........................66 5.6 Mixed micelles之確認.......................68 5.7 熱性質分析..................................69 5.8 穩定性測試..................................71 5.9 藥物包覆效率................................73 5.10 藥物釋放...................................78 5.11 電子顯微鏡.................................80 5.12 材料毒殺性.................................83 5.13 Curcumin毒殺性............................84 5.14 細胞吞噬實驗...............................85 5.15 動物實驗...................................88 第六章 結論與未來展望...............................89 第七章 參考文獻.....................................91 第八章 附錄.........................................95

    1. 生物醫用材料: 新文京開發出版股份有限公司; 2004.
    2. Uhrich K.E, Cannizzaro S.M, Langer R.S, Shakesheff K.M. Polymeric systems for controlled drug release. Chem Rev. 1999;99:3181-3198.
    3. Gao X, Cui Y, Levenson R.M, Chung L.W.K, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969-976.
    4. Ruth D. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Pharm Sci Technolo Today. 1999;2:441-449.
    5. O’Donnell P.B, McGinity J.W. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev. 1997;28:25-42.
    6. Batzri S, Korn E.D. Single bilayer liposomes prepared without sonication. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1973;298:1015-1019.
    7. Jeon H.J, Jeong Y.I, Jang M.K, Park Y.H, Nah J.W. Effect of solvent on the preparation of surfactant-free poly(DL-lactide-co-glycolide) nanoparticles and norfloxacin release characteristics. Int J Pharm. 2000;207:99-108.
    8. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces. 1999;16:3-27.
    9. Jones M.C, Leroux J.C. Polymeric micelles - a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48:101-111.
    10. Biomaterials CABf. Definition of the word biomaterial. Thc 6th Annnal Intermalionel Biomaterial Symposium; 1974,April 20-24.
    11. 柯智升. 利用多孔性Collagen Ⅱ/chondroitin sulfate/hyaluronic acid 載體誘導間葉幹細胞應用於組織工程軟骨之研究: 國立清華大學化學工程研究所; 2008.
    12. Friess W. Collagen--biomaterial for drug delivery. Eur J Pharm Biopharm. 1998;45:113-136.
    13. Francis Suh J.K, Matthew H.W.T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589-2598.
    14. Limor B, Machluf M. Alginate-chitosan complex coacervation for cell encapsulation: Effect on mechanical properties and on long-term viability. Biopolymers. 2006;82:570-579.
    15. Roy K, Mao H.Q, Huang S.K, Leong K.W. Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med. 1999;5:387-391.
    16. Wee S.F, Gombotz W.R. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31:267-285.
    17. Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Israel M, Barbash, Battler A, Granot Y, Cohen S. Bioengineered Cardiac Grafts : A New Approach to Repair the Infarcted Myocardium? Circulation. 2000;102:III-56-61.
    18. Kumar N, Langer R.S, Domb A.J. Polyanhydrides: an overview. Adv Drug Deliv Rev. 2002;54:889-910.
    19. Langer R, Peppas N.A. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE Journal. 2003;49:2990-3006.
    20. Gopferich A, Tessmar J. Polyanhydride degradation and erosion. Adv Drug Deliv Rev. 2002;54:911-931.
    21. Sodergard A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science. 2002;27:1123-1163.
    22. Lee J, Bae Y.H, Sohn Y.S, Jeong B. Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid) and poly(ethylene glycol). Biomacromolecules. 2006;7:1729-1734.
    23. Jeong B, Kibbey M.R, Birnbaum J.C, Won Y.Y, Gutowska A. Thermogelling Biodegradable Polymers with Hydrophilic Backbones: PEG-g-PLGA. Macromolecules. 2000;33:8317-8322.
    24. Borovinskii A.L, Khokhlov A.R. Micelle Formation in the Dilute Solution Mixtures of Block-Copolymers. Macromolecules. 1998;31:7636-7640.
    25. Sens P, Marques C.M, Joanny J.F. Mixed Micelles in a Bidisperse Solution of Diblock Copolymers. Macromolecules. 1996;29:4880-4890.
    26. Shim D.F.K, Marques C, Cates M.E. Diblock copolymers: comicellization and coadsorption. Macromolecules. 1991;24:5309-5314.
    27. Huang C.K, Lo C.L, Chen H.H, Hsiue G.H. Multifunctional Micelles for Cancer Cell Targeting, Distribution Imaging, and Anticancer Drug Delivery. Advanced Functional Materials. 2007;17:2291-2297.
    28. Vakil R, Kwon G.S. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) and PEG-phospholipid form stable mixed micelles in aqueous media. Langmuir. 2006;22:9723-9729.
    29. Slivniak R, Domb A.J. Stereocomplexes of enantiomeric lactic acid and sebacic acid ester-anhydride triblock copolymers. Biomacromolecules. 2002;3:754-760.
    30. Stix G. 來自印度的香料妙藥 科學人 2007年 3月號.
    31. Aggarwal B.B, Kumar A, Bharti A.C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23:363-398.
    32. Lin Y.G, Kunnumakkara A.B, Nair A, Merritt W.M, Han L.Y. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res. 2007;13:3423-3430.
    33. Siwak D.R, Shishodia S, Aggarwal B.B, Kurzrock R. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer. 2005;104:879-890.
    34. Aggarwal B.B, Shishodia S, Takada Y. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res. 2005;11:7490-7498.
    35. Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J. Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A. 2008;86:300-310.
    36. Dhillon N, Aggarwal B.B, Newman R.A, Wolff R.A, Kunnumakkara A.B. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008;14:4491-4499.
    37. Shoba G, Joy D, Joseph T. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64:353-356.
    38. Ireson C, Orr S, Jones D.J.L, Verschoyle R, Lim C.K, Luo J.L. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 2001;61:1058-1064.
    39. Li L, Ahmed B, Mehta K, Kurzrock R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol Cancer Ther. 2007;6:1276-1282.
    40. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A. Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"): a novel strategy for human cancer therapy. J Nanobiotechnology. 2007;5:3.
    41. Vemula P.K, Cruikshank G.A, Karp J.M, John G.. Self-assembled prodrugs: an enzymatically triggered drug-delivery platform. Biomaterials. 2009;30:383-393.
    42. Chung T.W, Huang Y.Y, Liu Y.Z. Effects of the rate of solvent evaporation on the characteristics of drug loaded PLLA and PDLLA microspheres. Int J Pharm. 2001;212:161-169.
    43. Hu J. Self-assembly of a polymer pair through poly(lactide) stereocomplexation. Nanotechnology. 2007.
    44. Shuai X, Ai H, Nasongkla N. Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Release. 2004;98:415-426.
    45. Kang N, Perron M.E, Prud'homme R.E, Zhang Y, Gaucher G, Leroux J.C. Stereocomplex block copolymer micelles: core-shell nanostructures with enhanced stability. Nano Lett. 2005;5:315-319.
    46. Zhang N, Guo S.R. Synthesis and micellization of amphiphilic poly(sebacic anhydride)-poly(ethylene glycol)-poly(sebacic anhydride) block copolymers. Journal of Polymer Science Part A: Polymer Chemistry. 2006;44:1271-1278.
    47. 邱麒維. 聚乙二醇-聚葵二酸酐自我組裝之奈米顆粒於藥物控制釋放之研究. 國立清華大學化學工程研究所. 2007.
    48. 李怜. 以葉酸標的之聚乙二醇-聚乳酸二團聯共聚合物合成及其高分子微胞之研究. 國立清華大學化學工程研究所. 2006.
    49. Jiang H.L, Zhu K.J, Dai L.J. Synthesis and characterization of new biodegradable fluorescing poly(amide-anhydrides). Polymer International. 2001;50:722-727.
    50. Adamczyk M, Grote J. Efficient synthesis of rhodamine conjugates through the 2'-position. Bioorg Med Chem Lett. 2000;10:1539-1541.
    51. Buchynskyy A, Kempin U, Vogel S, Hennig L, Welzel P. Synthesis of Fluorescent Derivatives of the Antibiotic Moenomycin A. European Journal of Organic Chemistry. 2002;2002:1149-1162.
    52. Gao H, Wang Y.N, Fan Y.G, Ma J.B. Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)-[beta]-cyclodextrin and its properties as the new carrier of protein delivery system. Journal of Controlled Release. 2005;107:158-173.
    53. Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater. 2008;4:1752-1761.
    54. Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R, Priyadarsini K.I. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim Biophys Acta. 2008;1780:673-679.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE