簡易檢索 / 詳目顯示

研究生: 彭宇民
Yu-Min Peng
論文名稱: 蒙地卡羅模擬瓦里安21EX醫用直線加速器6MV光子射束之初始電子參數最佳化
Determination of initial electron parameters for Monte Carlo simulation of Varian 21EX 6MV photon beams
指導教授: 董傳中
Chung-Chi Tung
李宗其
Chung-Chi Lee
趙自強
Tsi-Chian Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 68
中文關鍵詞: 蒙地卡羅
外文關鍵詞: Monte Carlo
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在找出適用於瓦里安21EX的6MV光子射束之直線加速器機頭模組的初始電子參數,以改善模擬時的準確度。過去許多研究證明蒙地卡羅模擬是一種精確的劑量模擬方法,但要達到精確模擬的目的,必須要擁有詳盡的直線加速器機頭幾何構造以及初始電子的參數。為了找出最佳的初始電子參數,本研究參考相關文獻對於初始電子的能量及空間分佈作了一些假設,把它分成初始電子平均能量、初始電子高斯分佈能譜分佈之半高全寬、初始電子徑向分佈之半高全寬等三個參數,並分別討論個別參數對劑量分佈的影響,利用嘗試錯誤的方法找出最佳的參數。且訂定一套流程,可供之後的研究作為參考。


    Determination of initial electron parameters for Monte Carlo simulation of Varian 21EX LINACs 6MV photon beams

    PURPOSES
    Previous studies have demonstrated that the Monte Carlo simulation is an accurate method for dose simulation in radiotherapy. Accurate dose calculation requires precise characterization of the accelerator geometry and parameterization of the initial electron beam incident on the target. The objective of the current study was to determine optimal initial electron parameters for Monte Carlo simulation of the 6 MV photon beam (Varian 21EX) at CGMH—Linkou.

    MATERIALS AND METHODS
    The EGSnrc user code BEAM (BEAM06) was used for dose simulation in this work. The geometry was input into BEAM from proprietary diagrams supplied by Varian for the 21EX Linac. The optimal initial electron parameters were determined by evaluating dose difference between simulated and measured percentage depth doses (PDD) and lateral profiles at 1.5, 10 and 20 cm depths for 10 10 and 40 40 cm2 fields through trial-and-error processes. It started with an initial guess of the mean energy of electrons with fixed energy and radial spread. Once the optimal mean energy was determined, optimized energy spread was sought followed by determination of radial intensity distribution. Dose difference evaluation was performed using the κα factor and off-axis ratio (OAR). The κα factor is defined as the fraction of the voxels with absolute dose difference less than α% of the maximum measured central axis dose. Data evaluation (κα test) for PDD was done for depth range between 1.5 and 20 cm. Lateral position of 90% field size was used for OAR evaluation and κα tests for lateral profiles were performed within the center 90% field width.

    RESULTS
    Penetration of percentage depth curves increases with increasing mean energy of initial electrons, especially for 10 10 cm2 field but insensitive to energy spread and almost independent of radial spread.
    OARs of lateral profiles decrease with increasing mean energy of initial electrons. Radial spread had great impact on OAR especially for 40 40 cm2 field but insensitivity to energy spread.
    Energy distribution of the initial electrons was concluded to be a Gaussian distribution with mean energy equal to 6.2 MeV and FWHM setting 0.235 MeV. The optimal intensity distribution obtained in this work is a radially symmetric Gaussian distribution with FWHM equal to 1 mm.

    摘要.............................................................................................................i 誌謝 ii 目錄 iii 圖目錄 v 表目錄 xi 第一章 序論 1 1.1 研究目的 3 1.2 論文架構 4 第二章 材料與方法 6 2.1醫用直線加速器 6 2.2蒙地卡羅劑量模擬程式 OMEGA/BEAM 9 2.2.1 BEAMnrc06 12 2.2.2 DOSXYZnrc06 13 2.2.3 BEAMDP 13 2.3 初始電子參數 13 2.3.1 初始電子平均能量 14 2.3.2 初始電子能量分佈 14 2.3.2 初始電子徑向分佈 16 2.4誤差縮減技術 17 2.4.1 制動幅射光子分割 (Bremsstrahlung Splitting) 18 2.4.2俄羅斯輪盤 (Russian Roulette) 20 2.4.3 電子分割 (Electron Splitting) 22 2.4.4 其他 23 2.5 研究方法 24 2.5.1 參數設定 24 2.5.2 評估方法 28 第三章 結果與討論 31 3.1初始電子平均能量對劑量分佈的影響 32 3.2初始電子能譜分佈對劑量分佈的影響 39 3.3初始電子徑向分佈對劑量分佈的影響 50 3.4 最佳初始電子條件 56 第四章 結論 64 參考文獻 67 圖目錄 圖2-1 BEAMnrc中直線加速器機頭幾何結構示意圖 9 圖2-2 使用蒙地卡羅方法之輻射粒子遷移模擬流程圖……10 圖2-3 平均值為0,標準差為1的高斯分佈曲線 16 圖2-4 靶上電子二度空間徑向對稱密度分佈的示意圖 17 圖2-5 俄羅斯輪盤作用示意圖……………………………….21 圖2-6 電子分割中,俄羅斯輪盤平面與電子分割平面示意圖 23 圖2-7 10□10cm2照野下n_split對模擬效率的關係圖 27 圖2-8 40×40cm2照野下n_split對模擬效率的關係圖 27 圖3-1 10 10cm2照野下,初始電子高斯分佈能譜之半高全寬0.235MeV,徑向分佈之半高全寬1mm時,初始電子的平均能量對D20/D10關係圖 32 圖3-2 40 40cm2照野下,初始電子高斯分佈能譜之半高全寬0.235MeV,徑向分佈之半高全寬1mm時,初始電子的平均能量對D20/D10關係圖 33 圖3-3 10 10cm2照野下,初始電子高斯分佈能譜之半高全寬0.235MeV,徑向分佈之半高全寬1mm時,初始電子的平均能量對OAR關係圖 33 圖3-4 40 40cm2照野下,初始電子高斯分佈能譜之半高全寬0.235MeV,徑向分佈之半高全寬1mm時,初始電子的平均能量對OAR關係圖 34 圖3-5 10 10cm2照野下,初始電子高斯分佈能譜之半高全寬0.235MeV,徑向分佈之半高全寬1mm時,初始電子的平均能量對κα,PDD關係圖 35 圖3-6 40 40cm2照野下,初始電子高斯分佈能譜之半高全寬0.235MeV,徑向分佈之半高全寬1mm時,初始電子平均能量對κα,PDD關係圖 36 圖3-7 10 10cm2照野下,初始電子高斯分佈能譜之半高全寬0.235MeV,徑向分佈之半高全寬1mm時,初始電子的平均能量對κα,profile關係圖 36 圖3-8 40 40cm2照野下,初始電子高斯分佈能譜之半高全寬0.235MeV,徑向分佈之半高全寬1mm時,初始電子的平均能量對κα,profile關係圖 37 圖3-9 10 10cm2照野下,初始電子平均能量為6.1MeV,徑向分佈之半高全寬為1mm時,高斯分佈能譜之半高全寬對D20/D10關係圖 39 圖3-10 10 10cm2照野下,初始電子平均能量6.2MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對D20/D10關係圖 40 圖3-11 40 40cm2照野下,初始電子平均能量6.1MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對D20/D10關係圖 40 圖3-12 40 40cm2照野下,初始電子平均能量6.2MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對D20/D10關係圖 41 圖3-13 10 10cm2照野下,初始電子平均能量6.1MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對OAR關係圖 41 圖3-14 10 10cm2照野下,初始電子平均能量6.2MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對OAR關係圖 42 圖3-15 40 40cm2照野下,初始電子平均能量6.1MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對OAR關係圖 42 圖3-16 40 40cm2照野下,初始電子平均能量6.2MeV,徑向分佈之半高全寬1mm時, 初始電子高斯分佈能譜之半高全寬對OAR關係圖 43 圖3-17 10 10cm2照野下,初始電子平均能量6.1MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對κα,PDD關係圖 44 圖3-18 10 10cm2照野下,初始電子平均能量6.2MeV,徑向分佈之半高全寬為1mm時高斯分佈能譜之半高全寬對κα,PDD關係圖 44 圖3-19 40 40cm2照野下,初始電子平均能量6.1MeV,徑向分佈之半高全寬為1mm時,初始電子高斯分佈能譜之半高全寬對κα,PDD關係圖 45 圖3-20 40 40cm2照野下,初始電子平均能量6.2MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對κα,PDD關係圖 46 圖3-21 10 10cm2照野下,初始電子平均能量6.1MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對κα,profile關係圖 47 圖3-22 10 10cm2照野下,平均能量6.2MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對κα,profile關係圖 47 圖3-23 40 40cm2照野下,初始電子平均能量6.1MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對κα,profile關係圖 48 圖3-24 40 40cm2照野下,初始電子平均能量6.2MeV,徑向分佈之半高全寬1mm時,初始電子高斯分佈能譜之半高全寬對κα,profile關係圖 48 圖3-25 10 10cm2照野下,初始電子平均能量6.2MeV,高斯分佈能譜之半高全寬0.235MeV時,初始電子徑向分佈之半高全寬對D20/D10關係圖 50 圖3-26 40 40cm2照野下,初始電子平均能量6.2MeV,高斯分佈能譜之半高全寬0.235MeV時,初始電子徑向分佈之半高全寬對D20/D10關係圖 51 圖3-27 10 10cm2照野下,初始電子平均能量6.2MeV,高斯分佈能譜之半高全寬0.235MeV時,初始電子徑向分佈之半高全寬對OAR關係圖 52 圖3-28 40 40cm2照野下,初始電子平均能量6.2MeV,高斯分佈能譜之半高全寬0.235MeV時,初始電子徑向分佈之半高全寬對OAR關係圖 52 圖3-29 10 10cm2照野下,初始電子平均能量6.2MeV,高斯分佈能譜之半高全寬0.235MeV時,初始電子徑向分佈之半高全寬對κα,PDD關係圖 53 圖3-30 40 40cm2照野下,初始電子平均能量6.2MeV,高斯分佈能譜之半高全寬0.235MeV時,初始電子徑向分佈之半高全寬對κα,PDD關係圖 53 圖3-31 10 10cm2照野下,初始電子平均能量6.2MeV,高斯分佈能譜之半高全寬0.235MeV時,初始電子徑向分佈之半高全寬對κα,profile關係圖 54 圖3-32 40 40cm2照野下,初始電子平均能量6.2MeV,高斯分佈能譜之半高全寬0.235MeV時,初始電子徑向分佈之半高全寬對κα,profile關係圖 55 表目錄 表3-1 初始電子高斯分佈能譜之半高全寬為0.235MeV,徑向分佈之半高全寬為1mm 時,不同初始電子平均能量下各照野的κ1總值 58 表3-2 初始電子平均能量為6.1MeV ,徑向分佈之半高全寬為1mm時,不同初始電子高斯分佈能譜之半高全寬下各照野的κ1總值 58 表3-3初始電子平均能量為6.2MeV ,徑向分佈之半高全寬為1mm時,不同初始電子高斯分佈能譜之半高全寬下各照野的κ1總值 59 表3-4 初始電子平均能量為6.2MeV,高斯分佈能譜之半高全寬為0.235MeV時,不同初始電子徑向分佈之半高全寬下各照野的κ1總值 59 表3-5 使用原始設定的初始電子參數在10×10cm2照野下,模擬與實際量測的劑量分佈之平均劑量差異、平均統計誤差、最大劑量差異 60 表3-6 使用最佳化的初始電子參數在10×10cm2照野下,模擬與實際量測的劑量分佈之平均劑量差異、平均統計誤差、最大劑量差異 61 表3-7 使用10×10cm2照野下最佳的的初始電子參數在10×10cm2照野下,模擬與實際量測的劑量分佈之平均劑量差異、平均統計誤差、最大劑量差異 61 表3-8 使用原始設定的初始電子參數在40×40cm2照野下,模擬與實際量測的劑量分佈之平均劑量差異、平均統計誤差、最大劑量差異 62 表3-9 使用最佳化的初始電子參數在40×40cm2照野下,模擬與實際量測的劑量分佈之平均劑量差異、平均統計誤差、最大劑量差異 62 表3-10 使用40×40cm2照野下最佳的的初始電子參數在40×40cm2照野下,模擬與實際量測的劑量分佈之平均劑量差異、平均統計誤差、最大劑量差異 62

    1 P. J. Keall, J. V. Siebers, B. Libby, and R. Mohan, "Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set," Med Phys 30, 574-582 (2003).
    2 John E. Damilakis, Michael. Mazonakis, and John. Stratakis, "Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams," Med. Phys. 31, 907-913 (2004).
    3 D. W. Rogers, B. A. Faddegon, G. X. Ding, C. M. Ma, J. We, and T. R. Mackie, "BEAM: a Monte Carlo code to simulate radiotherapy treatment units," Med Phys 22, 503-524 (1995).
    4 Sheikh-Bagheri, "Comparison of measured and Monte Carlo calculated dose distributions from the NRC linac," Med. Phys. 27 (2000).
    5 D. Sheikh-Bagheri and D. W. Rogers, "Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters," Med Phys 29, 379-390 (2002).
    6 Greg C. Sharp, Toni Neicu, and Steve B. Jiang, "Determination of the initial beam parameters in Monte Carlo linac simulation," Med. Phys. 33, 850-858 (2006).
    7 林堉烽, "以蒙地卡羅方法驗證強度調控放射治療的劑量分佈" 國立清華大學碩士論文 (2004).
    8 P. Andreo, "Monte Carlo techniques in medical radiation physics," Phys Med Biol 36, 861-920 (1991).
    9 R. S. Walling C. L. Hartmann Siantar, T. P. Daly, B. Faddegon, N. Albright,, A. F. Bielajew P. Bergstrom, C. Chuang, D. Garrett, R. K. House,, and D. J. Wieczorek D. Knapp, and L. J. Verhey, "Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom," Med. Phys. 28, 1322-1337 (2001).
    10 J. J. DeMarco, T. D. Solberg, and J. B. Smathers, "A CT-based Monte Carlo simulation tool for dosimetry planning and analysis," Med. Phys. 25, 1-11 (1998).
    11 D. W. Rogers and A. F. Bielajew, "Monte Carlo techniques of electron and photon transport for radiation dosimetry," Dosimetry of Ionization Rad v b , 427–539 (1990).
    12 Sabri Pllana, "HISTORY OF MONTE CARLO METHOD ".
    13 W.R. Nelson, H. Hirayama, and D. W. Rogers, "The EGS4 Code System," SLAC-265,Standford Linear Accelerator Center (1985).
    14 J.F. Briesmeister, "MCNP-A general Monte Carlo N-particle transport code,Version 4A," Los Alamos National laboratory Report,LA-12625 (1993).
    15 I. Kawrakow, "Accurate condensed history Monte Carlo simulation of electron transport.I.EGSnrc,the new EGS4 Version," Med. Phys. 27, 485-498 (2000).
    16 ICRU International Commission on Radiation Units and Measurements Report NO. 40, "Stopping powers for electrons and positrons," ICRU,Washington D.C. (1984).
    17 I. Kawrakow, D. W. Rogers, and B. R. Walters, "Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting," Med. Phys. 31, 2883-2898 (2004).
    18 E. Tanabe and R. W. Hamm, "Compact multi-energy electron linear accelerators," Phys. Res. B, 871–876 (1985).
    19 C. S. Nunan C. J. Karzmark, and E.Tanabe, "Medical Electron Accelerators," McGraw-Hill, New York (1993).
    20 D. A. Jaffray, J. J. Battista, A. Fenster, and P. Munro, "X-ray sources of medical linear accelerators: focal and extra-focal radiation," Med. Phys. 20, 1417-1427 (1993).
    21 Radiation Therapy Committee Task Group 21, AAPM, "A protocol for the determination of absorbed dose from high-energy photon and electron beams," Med Phys 10, 741-771 (1983).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE