簡易檢索 / 詳目顯示

研究生: 洪鉅晁
Hong, Jyu-Chao
論文名稱: 鎳-錳氫氧化物/氧化鋅奈米線/碳纖複合電極在超級電容器之應用
Ni-Mn hydroxide/ZnO nanowires/Carbon fiber for supercapacitor applications
指導教授: 黃金花
Huang, Jin Hua
口試委員: 陳翰儀
Chen, Han-Yi
羅一翔
Lo, I-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 超級電容鎳錳氫氧化物氧化鋅奈米線
外文關鍵詞: supercapacitor, nickel-manganese hydroxide, ZnO nanowires
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們先以化學浴沉積法在碳纖維布基板上生長氧化鋅奈米線,繼之利用脈衝電沉積法將鎳錳氫氧化物沉積在氧化鋅奈米線上,製作出鎳錳氫氧化物/氧化鋅奈米線/碳纖維複合電極。實驗首先對脈衝電沉積氫氧化鎳的參數做一系列的探討,在此基礎上,再加入錳元素,藉由調整鎳錳鍍液比例而得到兼具良好比電容值以及維持率之超級電容器。由最佳參數所沉積出的複合電極,在5 mV/s的掃描速率下具有1039 F/g的比電容值,但在經過在20 mV/s掃描3000圈以後,只能保有約68%的比電容維持率。此最佳化複合電極經過200 ºC、2小時的退火後,由於部分鎳錳氫氧化物轉生成鎳錳氧化物,其比電容維持率提高到86%。


    ZnO nanowires (NWs) have been considered as a promising supporting material for hybrid supercapacitors due to its excellent mechanical property, good electronic conductivity and easy-fabrication. In this study, a high-performance supercapacitor based on Ni-Mn hydroxide modified ZnO NWs on carbon fiber (CF) was developed. The well-aligned ZnO NWs were synthesized on carbon fiber by chemical bath deposition, followed by pulse pulse electrodeposition of Ni-Mn hydroxide on the surface of ZnO NWs. The effects of the electrodeposition conditions as well as the Ni/Mn bath ratio were systematically investigated. The Ni-Mn hydroxide/ZnO NWs/CF composite electrode fabricated under the optimal deposition conditions has exhibited a large specific capacitance of 1039 F/g at 5 mV/s, but only ~68% retention after 3000 cycles. However, upon annealing at 200 ºC for 2 h, the retention of the electrode was largely enhanced up to 86%, probably due to the formation of Ni-Mn oxide.

    摘要-----------------------II Abstract------------------III 致謝-----------------------IV 目錄-----------------------V 圖目錄---------------------VII 表目錄---------------------XI 第一章 緒論------------------1 第二章 文獻回顧--------------3 第三章 實驗材料、設備與方法---22 第四章 結果與討論------------28 第五章 結論-----------------73 第六章 參考文獻--------------74

    [1]B. E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum Pub. Co., New York, 1999.
    [2]R. Kotz, M. Carlen, Electrochimica Acta 2000, 45, 2483–2498.
    [3]A.G. Pandolfo, A.F. Hollenkamp, Journal of Power Sources 2006, 157, 11–27.
    [4]V.C. Lokhande, A.C. Lokhande, C.D. Lokhande, Jin Hyeok Kim, Taeksoo Ji, Journal of Alloys and Compounds 2016, 682, 381-403.
    [5]C. C. Hu, C. C. Wang, K. H. Chang, Electrochimica Acta 2007, 52, 2691–2700.
    [6]http://www.wikiwand.com/en/Pseudocapacitance,wikiwand.
    [7]Sanliang Zhang, Ning Pan, Advanced Energy Material 2015, 5, 1401401.
    [8]Y. Zhang, H. Feng,X. Wu, L. Wang,A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, International journal of hydrogen energy 2009, 34, 4889 – 4899.
    [9]H. Wang, M. Yoshio, A. K. Thapa, H. Nakamura, Journal of Power Sources 2007, 169, 375-380.
    [10]Y. Honda, T. Haramoto, M. Takeshige, H. shiozaki, T. Kitamura, M. Ishikawa, Electrochemical Solid-State Letter 2007, 10, A106-A110.
    [11]H. Wang, M. Yoshio, Electrochemistry Communications 2006, 8, 1481–1486.
    [12]E. Gomibuchi, T. Ichikawa, K. Kimura, S. Isobe, K. Nabeta, H. Fujii, Carbon 2006, 44, 983-988.
    [13]S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS nano 2010, 4, 2822–2830.
    [14]S. Dai, Z. Liu, B. Zhaob, J. Zengc, H. Hu, Q. Zhang, D. Chen, C. Qu, D. Dang, M. Liu, Journal of Power Sources 2018, 387, 43–48.
    [15]B. Fang, L. Binder, Electrochimica Acta 2007, 52, 6916–6921.
    [16]X. M. Liu, R. Zhang, L. Zhan, D. H. Long, W. M. Qiao, J. H. Yang, L. C. Ling, New Carbon Materials 2007, 22, 153-158.
    [17]B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, Y. Yang, Electrochimica Acta 2007, 52, 4595–4598.
    [18]C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Nano Letters 2006, 6, 2690-2695.
    [19]C. C. Hu, Y. H. Huang, K. H. Chang, Journal of Power sources 2002, 108, 117-127.
    [20]G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Nano Letters 2011, 11, 4438–4442.
    [21]S. I. Kim, J. S. Lee, H. J. Ahn, H. K. Song, J. H. Jang, ACS Applied Materials and Interfaces 2013, 5, 1596−1603.
    [22]Z. Lu, Z. Chang, W. Zhu, X. Sun, Chemical Communications. 2011, 47, 9651–9651-9653.
    [23]S.G. Kandalkar, J. L. Gunjakar, C. D. Lokhande, Applied Surface Science 2008, 254, 5540–5544.
    [24]C. T. Hsieh, W. Y. Lee, C. E. Lee, H. Teng, The Journal of Physical Chemistry C 2014, 118, 15146−15153.
    [25]S. Balasubramanian, K. K. Purushothaman, Electrochimica Acta 2015, 186, 285–291.
    [26]L. Huang,B. Yao, J. Sun, Xiang Gao, J. Wu, J. Wan, T. Li, Z. Hu, J. Zhou. Journal of Materials Chemistry A 2017, 5, 2897–2903.
    [27]A. González, E. Goikolea, J. Barrena, R. Mysyk, Renewable and Sustainable Energy Reviews 2016, 58, 1189–1206.
    [28]P. Sivaraman, Arup R. Bhattacharry, Sarada P. Mishraa, Avinash P. Thakur a, K. Shashidhara, Asit B. Samui, Electrochimica Acta 2013, 94, 182– 191.
    [29]H. H. Chang, C. K. Chang, Y. C. Tsai, C. S. Liao, Carbon 2012, 50, 2331–2336.
    [30]Silas K. Simotwo, Christopher DelRe, Vibha Kalra, ACS Applied Materials and Interfaces 2016, 8, 21261−21269.
    [31]X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, Mary B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, ACSnano 2012, 6, 3206–3213.
    [32]J. Lang, X. Yan, Q. Xue, Journal of Power Sources 2011, 196, 7841– 7846.
    [33]X. Wang, X. Han, M. Lim, N. Singh, C. L. Gan, M. Jan, P. S. Lee, The Journal of Physical Chemistry C 2012, 116, 12448−12454.
    [34]J. W. Wang, Y. Chen, B. Z. Chen, Journal of The Electrochemical Society 2015, 162, A1654-A1661.
    [35]Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, Advanced Materials 2009, 21, 4087–4108.
    [36]A. Arslan, E. Hur, S. Ilican, Y. Caglar, M. Caglar, Molecular and Biomolecular Spectroscopy 2014, 128, 716–723.
    [37]Y. Zhao, P. Jiang, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 44, 232– 239.
    [38]G. R. Li, Z. L. Wang, F. L. Zheng, Y. N. Ou, Y. X. Tong, Journal of Materials Chemistry 2011, 21, 4217–4221.
    [39]D. Cai, H. Huang, D. Wang, B. Liu, L. Wang, Y. Liu, Q. Li, T. Wang, ACS Applied Materials and Interfaces 2014, 6, 15905−15912.
    [40]Z. Xing, Q. Chu, X. Ren, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, X. Sun, Journal of Power Sources 2014, 245, 463-467.
    [41]I. H. Lo, J. Y. Wang, K. Y. Huang, J. H. Huang, W. P. Kang, Journal of Power Sources 2016, 308, 29-36.
    [42]https://en.wikipedia.org/wiki/Zinc_oxide.
    [43]胡啟章 電化學原理與方法 初版 ed. 2002,台北市: 五南.
    [44]A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2 nd ed., John Wiley, New York, 2001.
    [45]郭鶴桐, 基礎電化學及其量測, 化學工業出版社, 2009.
    [46]K. M. McPeak, T. P. Le, N. G. Britton, Z. S. Nickolov, Y. A. Elabd, J. B. Baxter, Langmuir 2011, 27, 3672–3677.
    [47]V. Strano, R. G. Urso, M. Scuderi, K. O. Iwu, F. Simone, E. Ciliberto, C. Spinella, S. Mirabella, The Journal of Physical Chemistry C 2014, 118, 28189−28195.
    [48]S. Guillemin, L. Rapenne, HervéRoussel, E. Sarigiannidou, G. Brémond, V. Consonni, The Journal of Physical Chemistry C 2013, 117, 20738−20745.
    [49]K. Govender, D. S. Boyle, P. B. Kenway, Paul O’Brien, Journal of Materials Chemistry 2004, 14, 2575–2591.
    [50]Y. Sun, D. J. Riley, Michael N. R. Ashfold, The Journal of Physical Chemistry B 2006, 110, 15186-15192.
    [51]A. Sugunan, H. C.Warad, M. Boman, J. Dutta, Journal of Sol-Gel Science Technology 2006, 39, 49–56.
    [52]H. M. Cheng, W. H. Chiu, C. H. Lee, S. Y. Tsai, W. F. Hsieh, The Journal of Physical Chemistry C 2008, 112, 16359–16364.
    [53]J. C. Chen, C. T. Hsu, C. C. Hu, Journal of Power Sources 2014, 253, 205-213.
    [54]F. Gauthard, Journal of Catalysis 2003, 220, 182-191.
    [55]C. C. Hu, J. C. Chen, K. H. Chang, Journal of Power Sources 2013, 221, 128-133.
    [56]G. H. A. T. P. V. Kamath, Chemistry Materials 2000, 12, 1195-1204.
    [57]M. S. Wu, K. C. Huang, Chemical Communications 2011, 47, 12122-12124.
    [58]J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu, X. Huang, Chemistry Materials 2010, 22, 212-217.
    [59]C. Y. Chen, C. C. Hu, Journal of Power Sources 2002, 111, 137-144.
    [60]M. S. Wu, K. C. Huang, Chemical Communications 2011, 47, 12122-12124.
    [61]X. L. Guo, X. Y. Liu, X. D. Hao, S. J. Zhu, F. Dong, Z. Q. Wen, Y. X. Zhang, Electrochimica Acta 2016, 194, 179–186.
    [62]M. Li, J. P. Cheng, J. Wang, F. Liu, X. B. Zhang, Electrochimica Acta 2016, 206, 108–115.
    [63]J. Huang, T. Lei, X. Wei, X. Liu, T. Liu, D. Cao, J. Yin, G. Wang, Journal of Power Sources 2013, 232, 370-375.
    [64]Y. H. Li, Q. Y. Li, H. Q. Wang, Y. G. Huang, X. H. Zhang, Q. Wu, H. Q. Gao, J. H. Yang, Applied Energy 2015, 153, 78–86.
    [65]J. Zhao, J. Chen, S. Xu, M. Shao, Q. Zhang, F. Wei, J. Ma, M. Wei, D. G. Evans, X. Duan, Advanced Function Materials 2014, 24, 2938–2946.
    [66]N. M. S. Rodrigues, A. K. Shukla, Journal of Applied Electrochemistry 1998, 28, 1235-1241.
    [67]C. C. Hu, T. W. Tsou, Electrochemistry Communications 2002, 4, 105-109.
    [68]J. Wei, M. Cheong, N. Nagarajan, I. Zhitomirsky, ECS Transactions 2007, 3, 1-9.
    [69]S. Hassan, M. Suzuki, A. El-Moneim, American Journal of Materials Science 2012, 2, 11-14.
    [70]D. Chen, H. Chen, X. Chang, P. Liu, Z. Zhao, J. Zhou, G. Xu, H. Lin, S. Han, Journal of Alloys and Compounds 2017, 729, 866-873
    [71]H. Nan, W. Ma, Z. Gu, B. Geng, X. Zhang, RSC Advanced 2015, 5, 24607-24614.

    QR CODE