研究生: |
李國豪 |
---|---|
論文名稱: |
低溫燒結之玻璃陶瓷系統在高溫之流變行為研究 Rheological behavior of a low-fire ceramic-filled glass system |
指導教授: | 簡朝和 |
口試委員: |
簡朝和
許志雄 王錫福 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 低溫共燒陶瓷 、單軸向黏度 、非等向性 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討硼矽玻璃(BSG)+氧化鋁(Al2O3)系統中,添加不同含量、不同顆粒大小的Al2O3粉末,以及在不同溫度下對系統自由燒結時黏性行為的影響;此外,亦探討顯微結構的非等向性對此系統黏性行為的改變。
利用黏彈性模型(visco-elastic model)結合構成方程式(constitutive equations)計算出系統在各條件的單軸向黏度(uniaxial viscosity)。單軸向黏度隨著密度的增加而上升,而溫度越高,系統的單軸向黏度則越低;此外,在相同密度下,隨著氧化鋁含量的增加以及氧化鋁顆粒大小的減少,會造成單軸向黏度的上升。此系統的活化能約為225kJ/mol。
在顯微結構的非等向性的部分,在試片燒結時,藉由施加單軸向壓應力使其顯微結構產生變化,並量化分析Al2O3顆粒及孔洞的方向性。隨著試片施壓的相對密度區間增加以及施加的壓力越大,Al2O3顆粒會趨向於與施壓方向垂直,造成材料於施壓方向的單軸向黏度增加。此外,亦發現不同的氧化鋁含量對非等向性程度的影響不明顯。
1. H.Jantunen, T. Kangasivieri, J. Vahakangas, and S. Leppavuori, “Design Aspects of Microwave Components with LTCC Technique,” J. Eur. Ceram. Soc., 23 [14] 2541-2548 (2003).
2. P. W. Polinski “Low Temperature Cofired Ceramic Packages for Microwave Gallium Arsenide Integrated Circuits,” US
Pat. No. 4, 899, 118 (1990).
3. C. Q. Scrantom and J. C. Lawson, “LTCC Technology: Where We are and Where We’re Going. II,” IEEE MTT-S Symposium on Technologies for wireless Applications, Vancouver, 193-200 (1999).
4. C. C. Huang and J. H. Jean, “Stress Required for Constrained Sintering of a Ceramic-Filled Glass Composite,” J. Am. Ceram. Soc., 87 [8] 1454–8 (2004).
5. R. K. Bordia and R. Raj, ‘‘Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate,’’ J. Am. Ceram. Soc., 68 [6] 287-292 (1985).
6. Y. C. Lin and J. H. Jean, ‘‘Constrained Densification Kinetics of Alumina/Borosilicate Glass + Alumina/Alumina Sandwich Structure,” J. Am. Ceram. Soc., 85 [1] 150-154 (2002).
7. R. Zuo, E. Aulbach, and R. K. Bordia, “Critical Evaluation of Hot forging Experiments: Case study in Alumina,” J. Am. Ceram. Soc., 86 [7]1099-1105 (2003).
8. R. Zuo, E. Aulbach and, J. Rodel, “Experimental determination of sintering stress and sintering viscoisities,” Acta mater., 51 4563-4574 (2003).
9. A. Mohanram, G. L. Messing and D. J. Green “Measurment of Viscosity of Densifying Glass-Based Systems by Isothermal Cyclic Loading Dilatometry,” J. Am. Ceram. Soc., 87 [2] 192-196 (2004).
10. J. B. Ollagnier, O. Guillon, and J. Rodel, ‘‘Effect of Anisotropic Microstructure on the Viscous Porperties of an LTCC Material,’’ J. Am. Ceram. Soc., 90 [12] 3846-3851 (2007).
11. A. Mohanram, S. H. Lee, G. L. Messing, and D. J. Green, “Constrained Sintering of Low-Temperature Co-Fired Ceramics,” J. Am. Ceram. Soc., 89 [6] 1923-1929 (2006).
12. R. K. Bordia, R. Zuo ,O. Guillon, S. M. Salamone and J. Rodel, “Anisotropic Constitutive Laws for Sintering Bodies,” Acta. Mater., 54 111-118 (2006).
13. A. Mohanram, G. L. Messing and D. J. Green “Densification and Sintering Viscosity of Low-Temperature Co-Fired Ceramics,” J. Am. Ceram. Soc., 00 [0] 1923-1929 (2005).
14. R. K. Bordia and G. W. Scherer, “On Constrained Sintering-I. Constitutive Model for a Sintering Body,” Acta. Metall., 36 [9]
2393-2397 (1988).
15. R. J. Xie, R. Zuo, E. Aulbach, U. Mackens, N. Hirosaki and J. Rodel “Uniaxial Viscosity of Low-Temperature Cofired Ceramic (LTCC) Powder Compacts Determined by Loading Dilatometry,” J. Eu. Ceram. Soc., 25 417-424 (2005).
16. H. Su and D. L. Johnson, “Master Sintering Curve: A Practical Approach to Sintering,” J. Am. Ceram. Soc., 79 [12] 3211-3217 (1996).
17. G. W. Scherer, “Sintering of Low-Density Glasses: I, Theory” J. Am. Ceram. Soc., 60 [5-6] 236-239 (1977).
18. M. N. Rahaman, L. C. De Jongie, G. W. Scherer and R. J. Brook, “Creep and Densification During Sintering of Glass Powder Compacts,” J. Am. Ceram. Soc., 70 [10] 766-774 (1987).
19. J. K. Mackenzie and R. Shuttleworth, “A Phenomenological Theory of Sintering ,” Proc. Phys. Soc., London, Sect. B, 62, 833-852 (1949)
20. V. C. Ducamp and R. Raj, ”Shear and Densification of Glass Powder Compacts,” J. Am. Ceram. Soc., 72 [5] 798-804 (1989).
21. W. Pabst and E. Gregorova,”Mooney-Type Relation for the Porosity Dependence of the Effective Tensile Modulus Ceramics,” J. Ma. Sci, 39 (2004) 3213-3215.