簡易檢索 / 詳目顯示

研究生: 吳杰
Jay Wu
論文名稱: 正子電腦斷層造影中使用射束阻擋裝置進行散射矯正
Scatter correction in PET using a beam stopper device
指導教授: 莊克士
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 94
中文關鍵詞: 正子電腦斷層散射矯正射束阻擋裝置雙能窗取樣
外文關鍵詞: PET, scatter correction, beam stopper device, dual-energy acquisition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正子電腦斷層造影(PET)具有較高的靈敏度與特異性,已被廣泛的應用於功能性檢查與腫瘤偵測上,三維正子電腦斷層造影可以達到更高的系統靈敏度,但是因為其缺乏septa,無可避免的會使散射符合事件隨著真實符合事件的增加而增加,相關的研究發現,散射符合事件的貢獻可能佔所有符合事件的50%以上。本研究針對三維正子電腦斷層造影,提出一種射束阻擋裝置以進行散射矯正。我們將阻擋器置於待掃描物體周圍,在不影響散射光子進入偵檢器的假設條件之下,阻擋器可以衰減一定比例的主要光子。利用此射束阻擋裝置,散射的量或是散射分率可以直接從被阻擋的LOR中求得,並且可以利用cublic spline內差法(beam stopper method, BS)或是雙能窗取樣資訊(beam-stopper scatter fraction method, BS-SF)求得在正旋圖(sinogram)中整個散射的分布。本實驗中,我們利用蒙地卡羅技術模擬數位假體以驗證射束阻擋裝置的散射矯正效果,在腹部(abdomen)假體的實驗中,BS方法正確的評估出散射的分布,並且改善了影像對比;在均勻假體的實驗中,BS-SF方法準確的將散射所造成的貢獻移除,使得活度濃度恢復到理論值;在猶他(Utah)假體的實驗中,BS-SF方法正確的評估出散射分率的分布,並且在沒有增加雜訊的情況下,改善了影像對比與定量結果;最後,在非均勻朱寶(Zubal)假體的實驗中,蒙地卡羅模擬的結果顯示出BS與BS-SF兩種方法都能有效的恢復影像對比,並降低均方根差。總結而言,我們所提出的射束阻擋裝置與散射矯正方法可以有效的移除不同種類的散射事件,包含單次康普敦散射、多重散射,以及從可視範圍(field of view)外來的散射貢獻,並且是一種直接、快速,以及準確的方法。


    Fully 3D positron emission tomography (PET) can achieve higher system sensitivity of coincidence events, but the absence of inter-slice septa inevitably leads to increased scattered events. The scattered events can contribute as much as 50% of the total detected events. In this study, we proposed a scatter correction method for 3D PET based on a beam stopper device. The stoppers were placed surrounding the object to attenuate primary beams. The scatter and scatter fraction were directly estimated at those blocked lines of response and then interpolated to other radial bins using cubic splice interpolation (beam stopper method, BS) or the dual-energy window information (beam-stopper scatter fraction method, BS-SF), respectively. The performance was evaluated by using Monte Carlo simulations of several digital phantoms. For the abdomen phantom study conducted by the BS method, the estimated scatter distribution matched well with the true one. For the Utah phantom study, the proposed BS-SF method can accurately estimate the scatter fraction distribution and improve image contrast and quantification without noticeable noise increase. The simulated results also demonstrated a better restoration of image contrast for the non-homogeneous Zubal phantom. We conclude that the proposed scatter correction method could effectively suppress various kinds of scattered events, including single scatter, multiple scatter, and scatter from outside the field-of-view. It is a direct, fast, and accurate technique for scatter correction in 3D PET.

    Abstract i 摘要 ii 致謝 iii Contents iv List of Figures vi List of Tables xi Chapter 1. Introduction 1 1.1. Characteristics of scattered events 2 1.2. Monte Carlo simulation 4 1.3. Research scope 5 Chapter 2. Scatter correction methods 16 2.1. Curve fitting method 16 2.2. Convolution subtraction 17 2.3. Energy window method 18 2.4. Model-based method 20 Chapter 3. Scatter correction using a beam stopper device 26 3.1. Introduction 26 3.2. Methods 29 3.2.1. Beam stopper 29 3.2.2. Air scan 30 3.2.3. Scatter component 30 3.2.4. Multiple beam stoppers 30 3.2.5. Primary component 31 3.2.6. Validation through Monte Carlo simulations of digital phantoms 31 3.2.7. Image quality assessment 33 3.2.8. Dual-energy window method 33 3.3. Results 34 3.4. Discussion 37 Chapter 4. Scatter correction using beam stoppers combined with dual-energy window acquisition 55 4.1. Introduction 55 4.2. Methods 57 4.2.1. Theory 57 4.2.2. Validation 60 4.3. Results 64 4.3.1. Air scan 64 4.3.2. Uniform phantom study 64 4.3.3. Utah phantom study 65 4.3.4. Anthropomorphic phantom study 66 4.4. Discussion 67 Chapter 5. Conclusions 83 References 86 Appendix 1. Publication list 92

    Accorsi R, Adam L-E, Werner M E and Karp J S 2004 Optimization of a fully 3D single scatter simulation algorithm for 3D PET Phys. Med. Biol. 49 2577-98
    Adam L-E, Karp J S and Brix G 1999 Investigation of scattered radiation in 3D whole-body positron emission tomography using Monte Carlo simulations Phys. Med. Biol. 44 2879–95
    Axelsson B, Msaki P and Israelsson A 1984 Subtraction of Compton-scattered photons in single photon emission computerized tomography J. Nucl. Med. 25 490-4
    Badawi R D, Kohlmyer S G, Harrison R L, Vannoy S D and Lewellen T K 2000 The effect of camera geometry on singles flux, scatter fraction and trues and randoms sensitivity for cylindrical 3D PET – a simulation study IEEE Trans. Nucl. Sci. 47 1228-32
    Bailey D L and Meikle S R 1994 A convolution-subtraction method for 3D PET Phys. Med. Biol. 39 411-24
    Bailey D L et al 1998 Quantitative procedures in 3D PET The theory and practice of 3D PET ed Bendriem B et al (Netherlands: Kluwer Academic Publishers) pp 55-109
    Bentourkia M, Msaki P, Cadorette J and Lecompte R 1995 Assessment of scatter components in high-resolution PET: correction by nonstationary convolution subtraction J. Nucl. Med. 36 121-30
    Buvat I, Castiglioni I, Feuardent J and Gilardi M C 2005 Unified description and validation of Monte Carlo simulators in PET Phys. Med. Biol. 50 329-46
    Cherry S R and Huang S C 1995 Effects of scatter on model parameter estimates in 3D PET studies of the human brain IEEE Trans. Nucl. Sci. NS-42 1174–9
    Cherry S R, Meikle S R and Hoffman E J 1993 Correction and characterization of scattered events in three dimensional PET using scanners with retractable septa J. Nucl. Med. 34 671–8
    Chuang K S, Wu J, Jan M L, Chen S, Hsu C H 2005 Novel scatter correction for three-dimensional positron emission tomography by use of a beam stopper device, Nucl. Instr. and Meth. A (in press)
    Ferreira N C, Trebossen R, Lartizien C, Brulon V, Merceron P and Bendriem B 2002 A hybrid scatter correction for 3D PET based on an estimation of the distribution of unscattered coincidences: implementation on the ECAT EXACT HR+ Phys. Med. Biol. 47 1555-71
    Grootoonk S, Spinks T J, Jones T, Michel C and Bol A 1992 Correction for scatter using a dual energy window technique with a tomograph operating without septa Conf. Rec. 1991 IEEE Medical Imaging Symp. pp 1569-73
    Grootoonk S, Spinks T J, Sashin D, Spryou N M and Jones T 1996 Correction for scatter in 3D brain PET using a dual energy window method Phys. Med. Biol. 41 2757-74
    Harrison R L, Vannoy S D, Haynor D R, Gillispie S B, Kaplan M S and Lewellen T K 1993 Preliminary experience with the photon history generator module of a public-domain simulation system for emission tomography Conf. Rec. 1993 IEEE Nuclear Science Symp. pp 1154-8
    Hasegawa T, Michel C, Kawashima K, Murayama H, Nakajima T, Matsuura H and Wada Y 2000 A study of external end-shields for PET IEEE Trans. Nucl. Sci. 47 1099-103
    Jaszczak R J, Greer K L, Floyd C E, Harris C C and Coleman R E 1984 Improved SPECT quantification using compensation for scattered photons J. Nucl. Med. 25 893-900
    Kadrmas D J, Frey E C, Karimi S S and Tsui B M W 1998 Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction Phys. Med. Biol. 43 857-74
    Kamphuis C, Beekman F J, Rijk P P and Viergever M A 1998 Dual matrix ordered subsets reconstruction for accelerated 3D scatter compensation in single-photon emission tomography Eur. J. Nucl. Med. 25 8-18
    Karp J S, Muehllehner G, Mankoff D A, Ordonez C E, Ollinger J M, Daube-Witherspoon M E and Haigh A T 1990 An continuous-slice PENN-PET: a positron tomography with volume imaging capability J. Nucl. Med. 31 617-27
    Koral K F and Dewaraja Y 1999 I-131 SPECT activity recovery coefficients with implicit or triple-energy-window scatter correction Nucl. Instr. and Meth. A 422 688-92
    Levin C S, Dahlbom M and Hoffman E J 1995 A Monte Carlo correction for the effect of Compton scattering on 3-D PET imaging IEEE Trans. Nucl. Sci. 42 1181-8
    Loudos G, Sakelios N, Giokaris N, Nikita K, Uzunoglu N and Maintas D 2004 A modification of the dual energy window subtraction method for scatter compensation in pixelized scintillators for SPECT Nucl. Instr. and Meth. A 527 145-50
    Luo J Q and Koral K F 1994 Background-adaptive dual-energy-window correction for Compton scattering in SPECT Nucl. Instr. and Meth. A 353 340-43
    McKee B T A, Gurvey A T, Harvey P J and Howse D C 1992 A deconvolution scatter correction for a 3D PET system IEEE Trans. Med. Imaging 11 560-9
    Meikle S R and Badawi R D. 2003 Quantitative techniques in Positron Emission Tomography Positron Emission Tomography: Basic Science and Clinical Practice ed P E Valk et al (London: Springer-Verlag) pp 115-146
    Niklason L T, Sorenson J A and Nelson J 1981 Scattered radiation in chest radiography Med. Phys. 8 677-81
    Ollinger J M 1996 Model-based scatter correction for fully 3D PET Phys. Med. Biol. 41 153-76
    Shao L and Karp J S 1991 Cross-plane scattering correction-point source deconvolution in PET IEEE Trans. Med. Imaging 10 234-9
    Shao L, Freifelder R and Karp J S 1994 Triple energy window scatter correction method for PET IEEE Trans. Med. Imaging 13 641-8
    Sossi V, Barney J S, Harrison R and Ruth T J 1995 Effect of scatter from radioactivity outside the field of view in 3D PET IEEE Trans. Nucl. Sci. 42 1157-61
    Spinks T J, Jones T, Bailey D L, Townsend D W, Grootoonk S, Bloomfield P M, Gilardi M-C, Casey M E, Sipe B and Reed J 1992 Physical performance of a positron tomograph for brain imaging with retractable septa Phys. Med. Biol. 37 1637-55
    Thompson C J 1988 The effect of collimation on scatter fraction in multi-slice PET IEEE Trans. Nucl. Sci. 35 598-602
    Townsend D W, Geissbuhler A, Defrise M, Hoffman E J, Spinks T J, Bailey D L and Gilardi M-C 1991 Fully three-dimensional reconstruction for a PET camera with retractable septa IEEE Trans. Med. Imaging. MI-10 499–504
    Watson C C 2000 New, faster, image-based scatter correction for 3D PET IEEE Trans. Nucl. Sci. 47 1587–94
    Watson C C, Newport D, Casey M E, deKemp R A, Beanlands R S and Schniand M 1997 Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging IEEE Trans. Nucl. Sci. 44 90-7
    Weisenberger A, Williams M, Wojcik R, Majewski S, Farzanpay F, Goode A, Kross B and Steinbach D 1998 Development of an application specific scintimammography detector based on a crystal scintillator array and a PSPMT Nucl. Instr. and Meth. A 409 520-23
    Werling A, Bublitz O, Doll J, Adam L-E and Brix G 2002 Fast implementation of the single scatter simulation algorithm and its use in iterative reconstruction of 3D PET data Phys. Med. Biol. 47 2947–60
    Wollenweber S D 2002 Parameterization of a model-based 3-D PET scatter correction IEEE Trans. Nucl. Sci. 49 722-27
    Wu J, Chuang K S, Hsu C H, Jan M L, Hwang I M and Chen T J 2005 Scatter correction for 3D PET using beam stoppers combined with dual-energy window acquisition: a feasibility study Phys. Med. Biol. (in press)
    Zaidi H 2000 Comparative evaluation of scatter correction techniques in 3D positron emission tomography Eur. J. Nucl. Med. 27 1813–26
    Zaidi H and Koral K F 2004 Scatter modelling and compensation in emission tomography Eur. J. Nucl. Med. Mol. Imag. 31 761-82
    Zubal I G, Harrell C R, Smith E O, Rattner Z, Gindi G and Hoffer P B 1994 Computerized three-dimensional segmented human anatomy Med. Phys. 21 299-302

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE