簡易檢索 / 詳目顯示

研究生: 許仁勇
Jen-Yung Hsu
論文名稱: 結晶-無定形雙團鏈式共聚合物,Poly(e-caprolactone)-block-Polybutadiene,之結晶動力學與結晶誘導形態轉變研究
Crystallization Kinetics and Crystallization-Induced Morphological Formation of Crystalline-Amorphous Diblock Copolymer, Poly(e-caprolactone)-block-Polybutadiene
指導教授: 陳信龍
Hsin-Lung Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 147
中文關鍵詞: 雙團鏈式共聚合物結晶-無定形結晶動力學形態轉變
外文關鍵詞: diblock copolymer, crystalline-amorphous, crystallization kinetics, morphological formaion
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在探討結晶-無定形雙團鏈式共聚合物,poly(e-caprolactone)-block-polybutadiene,之結晶動力學與結晶誘導相轉變.結果發現,高分子鏈所處的環境對結晶與相轉變行為有很大的影響.在摻合體系統中,摻合物的加入會延遲結晶誘導相轉變的發生;純的高分子鏈在圓柱微相中的結晶,較在層板微相中的結晶,需要克服更大的能量障礙;而當高分子鏈處在侷限空間中時,高分子鏈的相行為會和自由狀態下的高分子鏈有很大的不同,結晶機制也會轉變為成核控制.
    當純的高分子鏈在低溫結晶時,結晶會誘導特殊的螺旋狀緞帶結構,我們認為這種特殊結構的生成,□由於無定形鏈段之間的吸引力造成緞帶結構的扭曲而生成的.


    Diblock copolymers are known to be able to self-assemble into a variety of long-range ordered nanostructures. The formation of these nanostructures is driven by the segregation between the repulsive block chains. For crystalline-amorphous diblock copolymers, the crystallization driving force is usually strong enough to perturb the melt morphology if the system is weakly segregated. In the present work, we systematically study the morphological formation and crystallization kinetics of a relatively weakly-segregated diblock copolymer, poly(caprolactone)-block- polybutadiene (PCL-b-PB), under different environments, namely, the neat state, the blend with PB homopolymer (h-PB), and within confined space.
    For the binary blend of PCL-b-PB and h-PB, the existence of h-PB significantly retarded the crystallization-driven breakout of the melt mesophase. As the breakout could not take place in time during cooling from the melt at 5 ℃/min, PCL crystallization was largely confined within the individual microdomains, leading to a distinct correlation between crystallization kinetics and microdomain morphology. The crystallization-induced breakout of the cylinder morphology in the melt at low to moderate undercooling was also investigated. A domain coalescence prior to the formation of extended lamellar stacks was observed. This process was attributed to the crystallization-induced deformation of microdomains coupled with the effect of conformational communication of PB block chains.
    A slightly asymmetric PCL-b-PB was found to display equilibrium lamellar or metastable cylinder morphology in the melt. This offered a special system where the effect of melt morphology on the crystallization behavior can be studied based on a single sample. In the cylinder-forming PCL-b-PB, the crystallization was found to breakout the melt structure. However, the corresponding crystallization rate was significantly slower than the lamellar counterpart, signaling an additional energy barrier associated with the breakout of the cylindrical microdomains. This additional energy barrier was attributed to the diffusion of PCL blocks across PB matrix onto the growth front.
    We further examined the crystallization behavior of PCL-b-PB under the influence of spatial confinement. Using an emulsion approach, the microdomains of PCL-b-PB were confined within nanoscale droplets. Both the melt morphology and the crystallization kinetics were found to be very different from those in the bulk state. The nearly symmetric PCL-b-PB exhibited a lamellar morphology in the bulk while in the space-confined state the system was in the disordered state. The crystallization kinetics in the confined space was dominated by homogenous nucleation, while in the bulk it was governed by crystal growth. Our study revealed that the mechanism and kinetics of crystallization of PCL-b-PB strongly depended on the external environment, so did the morphological transformation induced by the crystallization.
    Finally, an anomalous helical-ribbon morphology was identified when a nearly symmetric PCL-b-PB crystallized at sufficiently large undercooling. This twisting structure was quite special compared to the common helical structure, since the supramolecular structure was derived from an achiral diblock copolymer and driven by the crystallization process. The twisting was proposed to be driven by the attractive interaction between PB brushes where the crystallization introduced a strong perturbation for the PB brushed to initiate the twisting.

    Chapter 1. Introduction to Phase Behavior and Crystallization of Block Copolymers 頁1 Chapter 2. Crystallization Kinetics and Crystallization-Induced Morphological Formation in the Blends of Poly(ε-caprolactone)-block- Polybutadiene and Polybutadiene Homopolymer 頁16 Chapter 3. Crystallization Kinetics in a Poly(ε-caprolactone)-block- Polybutadiene Exhibiting Both Lamellar and Cylinder Morphology 頁55 Chapter 4. Crystallization-Induced Helical-Ribbon Morphology in a Poly(ε-caprolactone)-block-Polybutadiene 頁85 Chapter 5. Morphological Formation and Crystallization of the Spacially Confined Poly(ε-caprolactone)-block-Polybutadiene 頁106 Appendix A. Correlation between Crystallization Kinetics and Melt Phase Behavior of Crystalline-Amorphous Block Copolymer/ Homopolymer Blends 頁129

    1. Hamley, I. W. The physics of Block Copolymers; Oxford: New York, 1998; Chapter 1.
    2. Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 2, 32.
    3. Hamely, I. W. In Developments in Block Copolymer Science and Technology; Hamley, I. W. Ed.; Wiley: England, 2004; Chapter 1.
    4. Ruzette, A. V.; Leibler, L. Nature Mater. 2005, 4, 19.
    5. Brown, H. R. Macromolecules 1989, 22, 2859.
    6. Gan, Z.; Jim, T. F.; Li, M.; Zhao, Y.; Wang, S.; Wu, C. Macromolecules 1999, 32, 590.
    7. Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature 1998, 396, 152.
    8. Jenekhe, S. A.; Chen, X. L. Science 1999,283, 372.
    9. Urbas, A.; Fink, Y.; Thomas, E. L. Macromolecules 1999, 32, 4748.
    10. Lopes, W. A.; Jaeger, H. M. Nature 2001, 414, 735.
    11. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. Nature 2003, 424, 411.
    12. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
    13. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L. et al. Macromolecules 1994, 27, 4063.
    14. F□ster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922.
    15. Hamley, I. W.; Koppi, K. A.; Rosedale, J. H.; Bates, F. S.; Almdal, K.; Mortensen, K. Macromolecules 1993, 26, 5959.
    16. Schulz, M. F.; Khandpur, A. K.; Bates, F. S.; Almdal, K.; Mortensen, K.; Hajduk, D. A. et al. Macromolecules 1996, 29, 2857.
    17. Huang, Y.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2003, 36, 764.
    18. Huang, Y.-Y.; Hsu, J.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2007, 40, 406.
    19. Huang, Y.-Y.; Hsu, J.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2007, 40, 3700.
    20. Helfand, E. Macromolecules 1975, 8, 552.
    21. Helfand, E.; Wasserman, Z. R. Macromolecules 1976, 9, 879.
    22. Leibler, L.Macromolecules 1980, 13, 1602.
    23. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
    24. Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
    25. Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
    26. Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
    27. Nandan, B.; Hsu, J.-Y.; Chen, H.-L. J. Macro. Sci., C: Polym. Rev. 2006, 46, 143.
    28. Tanaka, H.; Hashimoto, T. Polym. Commun. 1988, 29, 135.
    29. Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378.
    30. Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240.
    31. Matsen, M. W. Macromolecules 1995, 28, 5765.
    32. Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225.
    33. Koizumi, S.; Hasegawa, H.; Hashimoto, T. Makromol. Chem. Macromol. Symp. 1992, 62, 75.
    34. Hashimoto, T.; Koizumi, S.; Hasegawa, H. Physica B 1995, 213, 679.
    35. Loo, Y.-L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120
    36. Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
    37. Nojima, S.; Nakano, H.; Ashida, T. Polymer 1993, 34, 4168.
    38. Nojima, S.; Nakano, H.; Takahashi, Y. Polymer 1994, 35, 3479.
    39. Hong, S.; Yang, L.; MacKnight, W. J.; Gido, S. P. Macromolecules 2001, 34, 7009.
    40. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yen, F.; Lotz, B. Polymer 2001, 42, 5829.
    41. Zhu, L.; Mimnaugh, B. R.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yen, F.; Liu, L. Polymer 2001, 42, 9121.
    42. Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yen, F.; Hashimoto, T. Phys Rev B 1999, 60, 10022.
    43. Nojima, S.; Tanaka, H.; Rohadi, A.; Sasaki, S. Polymer 1998, 39, 1727.
    44. Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C. Macromolecules 2002, 35, 6937.
    45. Huang, Y.-Y.; Chen, H.-L.; Li, H.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2003, 36, 282.
    46. Huang Y.-Y.; Yang, C. H.; Chen, H.- L.; Chiu, F.-C.; Lin, T.-L.; Liou, W. Macromolecules 2004, 37, 486.
    47. Turnbull, D.; Cormia, R. L. J. Chem. Phys. 1961, 34, 820.
    48. Cormia, R. L.; Price, F. P.; Turnbull, D. J. Chem. Phys. 1962, 37, 1333.
    49. Koutsky, J. A.; Walton, A. G.; Bear, E. J. Appl. Phys. 1967, 38, 1832.
    50. Massa, M. V.; Dalnoki-Veress, K. Phys. Rev. Lett. 2004, 92, 255509-1.
    51. Chen, H.-L.; Lin, S.-Y.; Huang, Y.-Y.; Chiu, F.-C.; Liou, W.; Lin, J. S. Macromolecules 2002, 35, 9434.
    52. Hobbs, J. K.; Register, R. A. Macromolecules 2006, 39, 703.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE