簡易檢索 / 詳目顯示

研究生: 林 晟
Lin, Cheng
論文名稱: 以鋅(II)與鉻(III)離子定量及轉化氧化鐵電極之表面態
Quantification and Conversion of Surface States of Hematite Electrodes Using Zn(II) and Cr(III)
指導教授: 王竹方
Wang, Chu-Fang
口試委員: 談駿嵩
Tan, Chung-Sung
黃志彬
Huang, Chih-Pin
蔣本基
Chiang, Pen-Chi
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 80
中文關鍵詞: 赤鐵礦光化學反應表面態定量鈍化
外文關鍵詞: hematite, PEC, surface state, quantification, passivation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人類社會對能源的需求增加,永續性能源的發展極為迫切。使用光化學反應產生氫油是其中一個具有前景的方法,而氧化鐵正是作為光化學反應電池中光陽極的合適材料。不過,由於氧化鐵上的表面態所導致的低效率,造成普及應用發展上的瓶頸。更進一步,由於缺乏表面態與光化學表現的量化關係,更成為近一步發展的阻礙。在這項研究中,我們將痕量的鋅(II)和鉻(III)分別加入溶液中進行電化學實驗的測量,並同時利用感應耦合電漿質譜儀測量金屬離子在氧化鐵電極表面覆蓋率。結果顯示無論是鉻(III)或是鋅(II)都在0.1 %覆蓋率時擁有最小的起始電壓0.88 VRHE。我們也將鋅(II)覆蓋之氧化鐵電極藉由120 oC燒結兩小時,轉化為催化劑,並且觀察到了顯著提升的光電流與下降的起始電壓。Fe(III)和Ni(II)也經過同樣的處理,並且也觀察到較好的光化學反應效果。對於氧化鐵表面態的定量之研究將會是我們將來發展選擇性結合單分子催化劑在氧化鐵電極上的墊腳石。


    As the demand for energy rises, the need for sustainable green energy is in urgent. Utilizing photoelectrochemical reaction (PEC) to produce hydrogen fuel is a promising way to the future, and α-Fe2O3 is a suitable candidate for the photoanode of PEC cells. However, the low efficiency due to surface states of hematite electrode has long been a bottleneck in development. Furthermore, the lack of quantified relation between surface states and its photochemical behavior set a barrier for improvement. In this study, trace amount of Zn(II) and Cr(III) ions were added respectively in the solution then several electrochemical measurements as well as the coverage on hematite surface by ICP-MS were conducted. The results suggested a minimal onset potential 0.88 VRHE when coverage was about 0.1 % regardless of whether Cr(III) or Zn(II) was used as ion probes. We also transformed Zn(II) ion probes to catalysis after annealed at 120 oC for 2h. It is observed that the photocurrent and onset potential improved significantly. Fe(III) and Ni(II) also undergo the same procedure, it is noted that the Fe(III) and Ni(II) also behave well after annealing. The quantification of surface states sets a stepping stone for selectively associating molecular catalysts, which is the target in our ongoing study.

    Index Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Photoelectrochemical Cells 5 2.1.1 Brief Introduction of Photoelectrochemical Cells 5 2.1.2 Water Splitting Reaction 7 2.2 Hematite as Photoanodes 12 2.2.1 Properties of Hematite 12 2.2.2 The Development of Hematite as Photocatalysts 14 2.3 The Barriers of Hematite Electrodes in PEC Reaction 17 2.3.1 The Water Splitting Process of Hematite 17 2.3.2 Charge Separation and Hole Collection 19 2.3.3 Water Oxidation Kinetics 20 Chapter 3 Experimental Section 23 3.1 Chemical Reagents 23 3.2 Experimental Instruments 24 3.2.1 Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) 24 3.2.2 Electrochemical Workstation 26 3.2.3 X-ray Photoelectron Spectroscopy (XPS) 27 3.3 Details of Preparations and Experimental Methods 29 3.3.1 Preparation of α-Fe2O3 photoelectrodes 29 3.3.2 Electrochemical Measurements 29 3.3.3 Characterization of Electrodes 31 Chapter 4 Results and Discussion 32 4.1 Quantification of Surface States 32 4.2 Electrochemical Behaviors of Ion-Probed Hematite 44 4.3 Conversion of Surface States of Hematite to Highly Catalytic Sites 54 Chapter 5 Conclusions and Future Works 69 5.1 Conclusions 69 5.2 Future Works 70 Reference 71 Appendix 78   Figure Index Figure 1 1 Flow chart of experimental scheme 3 Figure 2 1 The basic schemes of the photoelectrochemical cells. a, Regenerative-type cell which produce electricity; b, a cell that generates a chemical fuel and hydrogen. 5 Figure 2 2 At pH 0, the energy states and band gaps of several popular metal oxide semiconductor used in Photocatalytic cells. 7 Figure 2 3 Solar energy spectrum (AM of 1.5) from earth’s surface. 7 Figure 2 4 The overall energy diagrams of photocatalytic water splitting (a) one-step excitation and (b) two-step excitation ; and the photoelectrochemical reaction using (c) a photoanode, (d) photocathode, and (e) photoanode and photocathode in tandem configuration. 10 Figure 2 5 The crystal structure of hematite. (a) The rhombohedral primitive cell. (b) The hexagonal cell, the oxygen atom is indicated as red; the gray one is iron. 13 Figure 2 6 SEM images of different morphology of the nanostructured hematite using in water splitting reaction. 16 Figure 2 7 The process of charge and energy transfer if hematite. The recombination pathways are represented in dotted red arrow. 17 Figure 2 8 The scheme of charge transfer process by hematite/reduced-graphene oxide composite. 19 Figure 3 1 An image of Agilent 7500a ICP-MS. 26 Figure 3 2 The instrument diagram of ICP-MS 26 Figure 3 3 Block diagram of the electrochemical analyzer 27 Figure 3 4 Simplified mechanism of XPS 28 Figure 4 1 Representative linear sweep voltammetry of hematite electrodes with different amount of surface coverage by either (a) Cr(III) or (b) Zn(II) measuring at the chopping mode. 32 Figure 4 2 Determined (a) photocurrent onset potential (VRHE) and (b) photocurrent density of hematite electrodes in 10 mM NaHCO3 (pH 8.2) solutions as a function of surface coverage. 36 Figure 4 3 The mechanism of the metal ions binding on the active sites of hematite surface, a)Lewis and b)Bronstedt acid coordination[60]. 41 Figure 4 4 Representative cyclic voltammetry of hematite electrodes with different amount of surface coverage by Zn(II) at scan rate 600 mV/s. 44 Figure 4 5 Representative cyclic voltammetry of hematite electrodes with different amount of surface coverage at 100 mV/s by either (a) Cr(III) or (b) Zn(II). 46 Figure 4 6 The chop mode experiment which applied constant potential VRHE=1.3 on different coverage of Zn2+ and Cr3+ ions on hematite electrodes. 48 Figure 4 7 Tafel plots which are selected from representative measurements of hematite electrodes with different amount of surface coverage by either (a) Cr(III) or (b) Zn(II) 50 Figure 4 8 The photocurrent at VRHE=1.1 V and the changing of the onset potential. Control is pure hematite; the red bar is hematite electrode with Zn2+ coverage about 0.09% and the green bar is hematite electrode with Zn2+ coverage about 0.09% after annealing. 54 Figure 4 9 The XPS analysis of the Zn(II) passivated hematite(red) and annealed hematite(blue). 57 Figure 4 10 Tafel plots which are selected from representative measurements of pure hematite, Zn(II) covered 0.09 % hematite and Zn(II) covered hematite after annealing. 59 Figure 4 11 Representative linear sweep voltammetry of hematite electrodes with pure hematite (black), Zn2+ with coverage 0.09 % (red) and Zn2+ with coverage 0.09 % after annealing (blue) measuring at the chopping mode respectively. 61 Figure 4 12 Representative cyclic voltammetry of hematite electrodes with Zn(II) before and after annealing at scan rate 100 mV/s. 63 Figure 4 13 The photocurrent at VRHE=1.1 V and the changing of the onset potential. Control is pure hematite; the red bar is hematite electrode with 10 µM Ni2+ and the green bar is hematite electrode with 10 µM Ni2+ after annealing. 64 Figure 4 14 The photocurrent at VRHE=1.1 V and the changing of the onset potential. Control is pure hematite; the red bar is hematite electrode with 10 µM Fe3+ and the green bar is hematite electrode with 10 µM Fe3+ after annealing. 67 Figure A 0 1 Titration of Surface Active Sites 78 Figure A 0 2 Open circuit plot of Zn(II) ion probed hematite 78 Figure A 0 3 Open circuit plot of Cr(III) ion probed hematite 79 Figure A 0 4 Open circuit plot of pure and annealed hematite 79 Figure A 5 Full tafel plot of Zn(II) ion probed hematite 80 Figure A 6 Full tafel plot of Cr(III) ion probed hematite 80

    Reference
    [1] P. J.Boddy, “Oxygen Evolution on Semiconducting TiO2,” J. Electrochem. Soc., vol. 115, no. 2, pp. 199–203, 1968.
    [2] A.Fujishima andK.Honda, “TiO2 photoelectrochemistry and photocatalysis,” Nature, vol. 213, no. 1998, p. 8656, 1972.
    [3] F.LeFormal, N.Tétreault, M.Cornuz, T.Moehl, M.Grätzel, andK.Sivula, “Passivating surface states on water splitting hematite photoanodes with alumina overlayers,” Chem. Sci., vol. 2, no. 4, p. 737, 2011.
    [4] M. G.Ahmed, I. E.Kretschmer, T. A.Kandiel, A. Y.Ahmed, F. A.Rashwan, andD. W.Bahnemann, “A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting,” ACS Appl. Mater. Interfaces, vol. 7, no. 43, pp. 24053–24062, 2015.
    [5] B.Klahr, S.Gimenez, F.Fabregat-Santiago, J.Bisquert, andT. W.Hamann, “Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes,” Energy Environ. Sci., vol. 5, no. 6, p. 7626, 2012.
    [6] T.Wang, Y.-R.Cheng, Y.-Y.Wu, C.-A.Lin, C.-C.Chiang, Y.-K.Hsieh, C.-F.Wang, andC.-P.Huang, “Enhanced Photoelectrochemical Water Splitting Efficiency of Hematite Electrodes with Aqueous Metal Ions as in situ Homogenous Surface Passivation Agents,” Phys. Chem. Chem. Phys., 2016.
    [7] M.Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, Nov.2001.
    [8] P.Lianos, “Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen,” Appl. Catal. B Environ., vol. 210, pp. 235–254, 2017.
    [9] T.Bak, J.Nowotny, M.Rekas, andC. .Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy, vol. 27, no. 10, pp. 991–1022, 2002.
    [10] N. S.Lewis, “Light work with water,” Nature, vol. 414, no. 6864, pp. 589–590, 2001.
    [11] A. J.Bard andM. A.Fox, “Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen,” Acc. Chem. Res., vol. 28, no. 3, pp. 141–145, 1995.
    [12] Y.Li andJ. Z.Zhang, “Hydrogen generation from photoelectrochemical water splitting based on nanomaterials,” Laser and Photonics Reviews, vol. 4, no. 4. pp. 517–528, 2010.
    [13] O.Zandi andT. W.Hamann, “The potential versus current state of water splitting with hematite,” Phys. Chem. Chem. Phys., vol. 17, no. 35, pp. 22485–22503, 2015.
    [14] M.Szklarczykt andJ. O. M.Bockris, “Photoelectrochemical Evolution of Hydrogen on p-Indium Phosphide,” Jouranl Phys. Chem., vol. 88, no. 22, pp. 5241–5245, 1984.
    [15] C.Li, T.Hisatomi, O.Watanabe, M.Nakabayashi, N.Shibata, K.Domen, andJ. J.Delaunay, “Simultaneous enhancement of photovoltage and charge transfer in Cu2O-based photocathode using buffer and protective layers,” Appl. Phys. Lett., vol. 109, no. 3, 2016.
    [16] H.Li, Y.Qi, Z.Li, Z.Ji, andX.Wu, “ZnO photoanodes coated with Ni-based nanostructured electrocatalyst for water oxidation,” J. Alloys Compd., vol. 661, pp. 201–205, 2016.
    [17] J.Greeley, T. F.Jaramillo, J.Bonde, I.Chorkendorff, andJ. K.Nørskov, “Computational high-throughput screening of electrocatalytic materials for hydrogen evolution,” Nat. Mater., vol. 5, no. 11, pp. 909–913, 2006.
    [18] A.Walsh, S.-H.Wei, Y.Yan, M. M.Al-Jassim, andJ. A.Turner, “Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: Density-functional theory calculations,” Phys. Rev. B, vol. 76, no. 16, p. 165119, 2007.
    [19] P.Bornoz, F. F.Abdi, S. D.Tilley, B.Dam, R.Van DeKrol, M.Graetzel, andK.Sivula, “A bismuth vanadate-cuprous oxide tandem cell for overall solar water splitting,” J. Phys. Chem. C, vol. 118, no. 30, pp. 16959–16966, 2014.
    [20] X.Shi, H.Jeong, S. J.Oh, M.Ma, K.Zhang, J.Kwon, I. T.Choi, I. Y.Choi, H. K.Kim, J. K.Kim, andJ. H.Park, “Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling,” Nat. Commun., vol. 7, p. 11943, 2016.
    [21] P.Dias, M.Schreier, S. D.Tilley, J.Luo, J.Azevedo, L.Andrade, D.Bi, A.Hagfeldt, A.Mendes, M.Grätzel, andM. T.Mayer, “Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting,” Adv. Energy Mater., vol. 5, no. 24, 2015.
    [22] T.Hisatomi, J.Kubota, andK.Domen, “Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting,” Chem. Soc. Rev., vol. 43, no. 22, pp. 7520–7535, 2014.
    [23] H. J.Lewerenz, “Surface states and Fermi level pinning at semiconductor/ electrolyte junctions,” J. Electroanal. Chem., vol. 356, no. 1–2, pp. 121–143, 1993.
    [24] K.Sivula, F.LeFormal, andM.Grätzel, “Solar water splitting: Progress using hematite (α-Fe 2O3) photoelectrodes,” ChemSusChem, vol. 4, no. 4, pp. 432–449, 2011.
    [25] K.Sivula, R.Zboril, F.LeFormal, R.Robert, A.Weidenkaff, J.Tucek, J.Frydrych, andM.Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc., vol. 132, no. 21, pp. 7436–7444, 2010.
    [26] Y.Guo, S. J.Clark, andJ.Robertson, “Electronic and magnetic properties of Ti 2 O 3 , Cr 2 O 3 , and Fe 2 O 3 calculated by the screened exchange hybrid density functional,” J. Phys. Condens. Matter, vol. 24, no. 32, p. 325504, 2012.
    [27] W. B.Ingler andS. U. M.Khan, “A Self-Driven p/n-Fe[sub 2]O[sub 3] Tandem Photoelectrochemical Cell for Water Splitting,” Electrochem. Solid-State Lett., vol. 9, no. 4, p. G144, 2006.
    [28] I.Cesar, K.Sivula, A.Kay, andR.Zboril, “Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting,” J. Phys., pp. 772–782, 2008.
    [29] N. J.Cherepy, D. B.Liston, J. A.Lovejoy, H.Deng, andJ. Z.Zhang, “Ultrafast Studies of Photoexcited Electron Dynamics in γ- and α-Fe 2 O 3 Semiconductor Nanoparticles,” J. Phys. Chem. B, vol. 102, no. 5, pp. 770–776, 1998.
    [30] M. P.Dare-Edwards, J. B.Goodenough, A.Hamnett, andP. R.Trevellick, “Electrochemistry and photoelectrochemistry of iron(III) oxide,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 79, no. 9, p. 2027, 1983.
    [31] F. J.Morin, “Electrical Properties of αFe2O3 and αFe2O3 Containing Titanium,” Phys. Rev., vol. 83, no. 5, pp. 1005–1010, 1951.
    [32] J. H.Kennedy, “Photooxidation of Water at α-Fe[sub 2]O[sub 3] Electrodes,” J. Electrochem. Soc., vol. 125, no. 5, p. 709, 1978.
    [33] K. L.Hardee andA. J.Bard, “Semiconductor Electrodes X . Photoelectrochemical Behavior of Several Polycrystalline Metal Oxide Electrodes in Aqueous Solutions,” J. Electrochem. Soc., vol. 124, no. 2, pp. 215–224, 1977.
    [34] J. H.Kennedy andK. W.Frese, “Photooxidation of Water at α-Fe2O3 Electrodes,” J. Electrochem. Soc., vol. 125, pp. 709–714, 1978.
    [35] A.Kay, I.Cesar, andM.Grätzel, “New Benchmark for Water Photooxidation by Nanostructured r -Fe 2 O 3 Films,” J. Am. Chem. Soc., no. 7, pp. 15714–15721, 2006.
    [36] A.Kleiman-Shwarsctein, Y. S.Hu, A. J.Forman, G. D.Stucky, andE. W.McFarland, “Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting,” J. Phys. Chem. C, vol. 112, no. 40, pp. 15900–15907, 2008.
    [37] P.Zhang, A.Kleiman-Shwarsctein, Y.-S.Hu, J.Lefton, S.Sharma, A. J.Forman, andE. W.McFarland, “Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD,” Energy Environ. Sci., vol. 4, no. 3, pp. 1020–1028, 2011.
    [38] Y. S.Hu, A.Kleiman-Shwarsctein, A. J.Forman, D.Hazen, J. N.Park, andE. W.McFarland, “Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting,” Chem. Mater., vol. 20, no. 12, pp. 3803–3805, 2008.
    [39] A. G.Tamirat, J.Rick, A. A.Dubale, W.-N.Su, andB.-J.Hwang, “Using hematite for photoelectrochemical water splitting: a review of current progress and challenges,” Nanoscale Horiz., vol. 1, no. 4, pp. 243–267, 2016.
    [40] M.Frites, Y. A.Shaban, andS. U. M.Khan, “Iron oxide (n-Fe2O3) nanowire films and carbon modified (CM)-n-Fe2O3 thin films for hydrogen production by photosplitting of water,” Int. J. Hydrogen Energy, vol. 35, no. 10, pp. 4944–4948, 2010.
    [41] M.Gratzel, J.Kiwi, C. L.Morrison, R. S.Davidson, andA. C. C.Tseung, “Visible-light-induced photodissolution of a-Fe2O3 powder in the presence of chloride anions,” J. Chem. Soc. Farad. T. 1, vol. 81, no. 8, pp. 1883–1890, 1985.
    [42] N. T.Hahn andC. B.Mullins, “Photoelectrochemical performance of nanostructured Ti- and Sn-doped α-Fe2O3 photoanodes,” Chem. Mater., vol. 22, no. 23, pp. 6474–6482, 2010.
    [43] J. Y.Zheng, M. J.Kang, G.Song, S. I.Son, S. P.Suh, C. W.Kim, andY. S.Kang, “Morphology evolution of dendritic Fe wire array by electrodeposition, and photoelectrochemical properties of α-Fe2O3 dendritic wire array,” CrystEngComm, vol. 14, no. 20, p. 6957, 2012.
    [44] L.Jia, K.Harbauer, P.Bogdanoff, I.Herrmann-Geppert, A.Ramírez, R.van deKrol, andS.Fiechter, “α-Fe 2 O 3 films for photoelectrochemical water oxidation – insights of key performance parameters,” J. Mater. Chem. A, vol. 2, no. 47, pp. 20196–20202, 2014.
    [45] O.Zandi, B. M.Klahr, andT. W.Hamann, “Highly photoactive Ti-doped α-Fe 2 O 3 thin film electrodes: resurrection of the dead layer,” Energy Environ. Sci., vol. 6, no. 2, pp. 634–642, 2013.
    [46] F. J.Morin, “Electrical properties of α-Fe2O3 and α-Fe2O3 containing titanium,” Phys. Rev., vol. 83, no. 5, pp. 1005–1010, 1951.
    [47] K.Sivula, F.LeFormal, andM.Grätzel, “WO3-Fe2O3 photoanodes for water splitting: A host scaffold, guest absorber approach,” Chem. Mater., vol. 21, no. 13, pp. 2862–2867, 2009.
    [48] F. K.Meng, J. T.Li, S. K.Cushing, J.Bright, M. J.Zhi, J. D.Rowley, Z. L.Hong, aManivannan, a D.Bristow, andN. Q.Wu, “Photocatalytic Water Oxidation by Hematite/Reduced Graphene Oxide Composites,” Acs Catal., vol. 3, pp. 746–751, 2013.
    [49] D. K.Zhong, M.Cornuz, K.Sivula, M.Grätzel, andD. R.Gamelin, “Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation,” Energy Environ. Sci., vol. 4, no. 5, p. 1759, 2011.
    [50] J. A.Glasscock, P. R. F.Barnes, I. C.Plumb, andN.Savvides, “Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si,” J. Phys. Chem. C, vol. 111, no. 44, pp. 16477–16488, 2007.
    [51] T. H.Wang, C. C.Chiang, Y. L.Wu, C.Lin, Y. J.Cheng, Y. K.Hsieh, C. F.Wang, andC. P.Huang, “Characteristics of elemental carbon overlayers over hematite electrodes prepared by electrodeposition with organic acid additives,” Appl. Catal. B Environ., vol. 207, pp. 1–8, 2017.
    [52] O.Zandi andT. W.Hamann, “Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy,” Nat. Chem., vol. 8, no. 8, pp. 778–783, 2016.
    [53] Z.Zhou, J.Liu, R.Long, L.Li, L.Guo, andO.VPrezhdo, “Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics,” J. Am. Chem. Soc., vol. 139, no. 19, pp. 6707–6717, May2017.
    [54] X.Zhao, J.Feng, S.Chen, Y.Huang, T. C.Sum, andZ.Chen, “New insight into the roles of oxygen vacancies in hematite for solar water splitting,” Phys. Chem. Chem. Phys., vol. 19, no. 2, pp. 1074–1082, 2017.
    [55] J.Ha, T. P.Trainor, F.Farges, andG. E.Brown, “Interaction of aqueous Zn(II) with hematite nanoparticles and microparticles. Part 1. EXAFS study of Zn(II) adsorption and precipitation,” Langmuir, vol. 25, no. 10, pp. 5574–5585, 2009.
    [56] M. L.Peterson, G. E.Brown, G. a.Parks, andC. L.Stein, “Differential redox and sorption of Cr (III/VI) on natural silicate and oxide minerals: EXAFS and XANES results,” Geochim. Cosmochim. Acta, vol. 61, no. 16, pp. 3399–3412, 1997.
    [57] B. A.Manning, J. R.Kiser, H.Kwon, andS. R.Kanel, “Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron,” Environ. Sci. Technol., vol. 41, no. 2, pp. 586–592, 2007.
    [58] J.Suntivich, H. A.Gasteiger, N.Yabuuchi, H.Nakanishi, J. B.Goodenough, andY.Shao-Horn, “Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries,” Nat. Chem., vol. 3, no. 8, pp. 647–647, 2011.
    [59] O.Zandi andT. W.Hamann, “Enhanced Water Splitting Efficiency Through Selective Surface State Removal,” J. Phys. Chem. Lett., vol. 5, no. 9, pp. 1522–1526, May2014.
    [60] P.Mäkie, G.Westin, P.Persson, andL.Österlund, “Adsorption of trimethyl phosphate on maghemite, hematite, and goethite nanoparticles,” J. Phys. Chem. A, vol. 115, no. 32, pp. 8948–8959, 2011.
    [61] S.Aboud, J.Wilcox, andG. E.Brown, “Density functional theory investigation of the interaction of water with α-Al2O3 and α-Fe2O3(1102) surfaces: Implications for surface reactivity,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 83, no. 12, pp. 1–16, 2011.
    [62] J. F.Boily, M.Yeşilbaş, M.Md. Musleh Uddin, L.Baiqing, Y.Trushkina, andG.Salazar-Alvarez, “Thin Water Films at Multifaceted Hematite Particle Surfaces,” Langmuir, vol. 31, no. 48, pp. 13127–13137, 2015.
    [63] S.Chatman, P.Zarzycki, andK. M.Rosso, “Surface potentials of (001), (012), (113) hematite (α-Fe2O3) crystal faces in aqueous solution,” Phys Chem Chem Phys, vol. 15, no. 33, pp. 13911–13921, 2013.
    [64] M.Ghaemi, F.Ataherian, A.Zolfaghari, andS. M.Jafari, “Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction,” Electrochim. Acta, vol. 53, no. 14, pp. 4607–4614, 2008.
    [65] Y.Shi, H.Sun, W. A.Saidi, M. C.Nguyen, C. Z.Wang, K.Ho, J.Yang, andJ.Zhao, “Role of Surface Stress on the Reactivity of Anatase TiO 2 (001),” J. Phys. Chem. Lett., vol. 8, no. 8, pp. 1764–1771, 2017.
    [66] J.Deng, X.Lv, J.Gao, A.Pu, M.Li, X.Sun, andJ.Zhong, “Facile synthesis of carbon-coated hematite nanostructures for solar water splitting,” Energy Environ. Sci., vol. 6, no. 6, p. 1965, 2013.
    [67] A. J.Bard andL. R.Faulkner, ELECTROCHEMICAL METHODS Fundamentals and Applications. 1944.
    [68] M.Huynh, C.Shi, S. J. L.Billinge, andD. G.Nocera, “Nature of Activated Manganese Oxide for Oxygen Evolution,” J. Am. Chem. Soc., vol. 137, no. 47, pp. 14887–14904, 2015.
    [69] R. D. L.Smith, M. S.Prevot, R. D.Fagan, S.Trudel, andC. P.Berlinguette, “Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel,” J. Am. Chem. Soc., vol. 135, no. 31, pp. 11580–11586, 2013.
    [70] K.Fan, H.Chen, Y.Ji, H.Huang, P. M.Claesson, Q.Daniel, B.Philippe, H.Rensmo, F.Li, Y.Luo, andL.Sun, “Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation_Sup,” Nat. Commun., vol. 7, no. May, p. 11981, 2016.
    [71] T.Shinagawa, A. T.Garcia-Esparza, andK.Takanabe, “Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion,” Sci. Rep., vol. 5, no. 1, p. 13801, 2015.
    [72] J.Rossmeisl, Z. W.Qu, H.Zhu, G. J.Kroes, andJ. K.Nørskov, “Electrolysis of water on oxide surfaces,” J. Electroanal. Chem., vol. 607, no. 1–2, pp. 83–89, 2007.
    [73] R.Zhang, M.Shao, S.Xu, F.Ning, L.Zhou, andM.Wei, “Photo-assisted synthesis of zinc-iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting,” Nano Energy, vol. 33, no. January, pp. 21–28, 2017.
    [74] J. W.Moir, E.V.Sackville, U.Hintermair, andG. A.Ozin, “Kinetics versus Charge Separation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst,” J. Phys. Chem. C, vol. 120, no. 24, pp. 12999–13012, 2016.
    [75] M. S.Burke, L. J.Enman, A. S.Batchellor, S.Zou, andS. W.Boettcher, “Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles,” Chem. Mater., vol. 27, no. 22, pp. 7549–7558, 2015.

    QR CODE