研究生: |
彭文君 Wen-Jiun Peng |
---|---|
論文名稱: |
以老鼠白血病病毒核酸銜接酵素與 Sp1 鋅手指區位之融合蛋白於細胞內標定核酸銜接作用 Target integration by a chimeric Sp1 zinc finger domain/Moloney murine leukemia virus integrase protein in vivo |
指導教授: |
林志侯
Thy-Hou Lin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 老鼠白血病病毒 、核酸銜接酵素 、Sp1 鋅手指區位 、融合蛋白 、標定核酸銜接作用 、愛滋病毒 、愛滋病 、細胞內 |
外文關鍵詞: | MLV, integrase, Sp1 zing finger, fusion protein, target integration, HIV, AIDS, in vivo |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核酸銜接酵素是反轉錄病毒感染史中不可欠缺的一種蛋白。其在反轉錄病毒之生活史中所扮演的角色為將反轉錄酵素所反轉錄之 cDNA 銜接至寄主細胞的基因組中,然後反轉錄病毒才得以進行其感染複製史。至今,較被了解的作用機制大多是在細胞外in vitro) 之實驗推測而來。從歷年來對 HIV-1 之核酸銜接酵素的研究可知其銜接功能可大致分為二個步驟:首先,核酸銜接酵素會與病毒端邊的 DNA 結合形成銜接體,將病毒 DNA 的3' 端移除 2 個核□酸,此步驟常被稱為 3' 端剪切作用或端邊剪切作用;然後此新產生的病毒 cDNA 的 3' OH 端被銜接到標的 DNA,此步驟稱為 DNA 股轉移作用。此兩步驟在細胞外,似乎不需任何其他病毒的或細胞的蛋白質參與協助,即可由核酸銜接酵素單獨完成任務。然而核酸銜接酵素是將病毒的 cDNA 銜接至寄主細胞染色體的何處,至今尚不十分清楚。在細胞外實驗之結果顯示可能是隨機的將病毒的 cDNA 銜接至標的 DNA 中,並沒有DNA 序列的專一性;但有些實驗則顯示可能與 DNA 的構形或被修飾過的 DNA 或其他蛋白質結合區域有關。
核酸銜接酵素是否在細胞內會受病毒的其他分子所影響,目前所知並不十分清楚。在本篇論文中,我們證明了在細胞內,缺乏任何 HIV-1 的蛋白時,表現之 HIV-1 核酸銜接酵素能夠單獨將 MLV 之完整基因銜接至寄主細胞之基因組中。首先我們將具感染能力的原形病毒載體 MLV-K 之核酸銜接酵素做部分切除,再分別在 MLV LTR 之 3’ 和 5’ 端做定點突變,使其能夠成為 HIV-1 核酸銜接酵素之受質 DNA。將這些載體轉化感染已被具有 HIV-1 核酸銜接酵素基因的 pXT1-IN 載體所轉化感染過而能持續表現 HIV-1 核酸銜接酵素的 NIH/3T3 細胞。再以非放射性的反轉錄酵素活性測試的方法偵測病毒之釋出。另外以 PCR 分析法偵測出是否這些基因已被銜接至細胞的基因組中。我們發現在細胞內的狀況下,缺乏任何 HIV-1 的病毒蛋白時,HIV-1 之核酸銜接酵素能夠單獨行使核酸銜接之反應而將 MLV 之完整基因 DNA 銜接至寄主細胞之基因組中。
核酸銜接酵素能夠將受質 DNA 銜接至標的 DNA,因此以反轉錄病毒做為基因傳遞的系統將被廣泛的應用在基因治療上。但是野生型的反轉錄病毒核酸銜接並無基因序列的專一性,這種應用之結果可能導致不正常的活化或者阻斷一些正常基因的表現而產生致癌等病變。為了儘可能的將受質基因銜接或傳遞至預先設定的基因位置,我們嚐試發展以反轉錄病毒所衍生出的系統,將老鼠白血病病毒之核酸銜接酵素與 Sp1 DNA 結合區位表現形成融合蛋白。此融合蛋白之 Sp1 鋅手指區位基因被接在完整的核酸銜接酵素之 C 端,所建構出之載體 (pMIN-Sp1) 與野生型之病毒載體 (pMLV-K) 共同轉化感染 NIH/3T3 細胞,然後收集所產生的病毒,再將這些病毒感染 3T3 細胞。經由實驗證明基因重組之病毒基因可以被銜接至寄主細胞的基因組中,並且能表現出重組融合蛋白之 mRNA。將這些被重組病毒感染的細胞基因組抽出,以限制酵素分解,以 TA 選殖之方式選殖至 pCRII-TOPO 載體。這些載體隨後以 Sp1 引子與 LTR 上之引子做 PCR 反應篩選出可能具有 Sp1 位置的選殖株,最後將這些載體定序,結果發現在重組病毒組中有高達 12.5 % 之選殖株具有 Sp1 結合位置,而野生型病毒之感染組則沒有發現會標定至 Sp1 結合位置。將得到的序列分別以 NCBI GenBank Mouse EST 比對,則發現這些具有 Sp1 結合位置之選殖株的基因含有老鼠各種細胞之基因,而野生型組之序列則有 73.3% 沒有契合之基因被發現。
Acel, A., Udashkin, B. E., Wainberg, M. A., and Faust, E. A. (1998). Efficient gap repair catalyzed in vitro by an intrinsic DNA polymerase activity of human immunodeficiency virus type 1 integrase. J. Virol. 72, 2062-71.
Aiyar, A., Ge, Z., and Leis, J. (1994). A specific orientation of RNA secondary structures is required for initiation of reverse transcription. J. Virol. 68, 611-618.
Andrake, M. D., Skalka, A. M. (1996). Retroviral integrase, putting the pieces together. J. Biol. Chem. 271, 19633-19636.
Atwood, A., Choi, J., and Levin, H. L. (1998). The application of a homologous recombination assay revealed amino acid residues in an LTR-retrotransposon that were critical for integration. J. Virol. 72, 1324-33.
Aubin, R. J., Weinfeld, M., and Paterson, M. C. (1988). Factors influencing efficiency and reproducibility of polybrene-assisted gene transfer. Somatic Cell Mol. Genet. 14, 155-167.
Balakrishnan, M., and Jonsson, C. B. (1997). Functional identification of nucleotides conferring substrate specificity to retroviral integrase reactions. J. Virol. 71, 1025-35.
Baltimore, D. (1970). RNA-dependent DNA polymerase in virions of RNA tumor viruses. Nature 226, 1209-1211.
Barnes, W. M. (1994). PCR amplification of up to 35-kb DNA with high fidelity and high yield from λ bacteriophage templates. Proc. Natl. Acad. Sci. U. S. A. 91, 2216-2220.
Beese, L. S., and Steitz, T. A. (1991). Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10, 25-33.
Blundell, T., and Pearl, L. (1989). A second frint against AIDS. Nature 337, 596-597.
Bor, Y.C., (1995). In vitro integration of human immunodeficiency virus type 1 cDNA into targets containing protein-induced bends. Proc. Natl. Acad. Sci. U. S. A. 92, 10334-10338.
Boulter, C. A., and Wagner, E. F. (1987). A universal retroviral vector for efficient constitutive expression of exogenous gene. Nucleic Acids Res. 15, 7194-7194.
Brown, P. O., Bowerman, B., Varmus, H. E., and Bishop, J. M. (1987). Correct integration of retroviral DNA in vitro. Cell 49, 347-356.
Brown, P. O., Bowerman, B., Varmus, H. E., Varmus, H. S., and Bishop, J. M. (1989). Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc. Natl. Acad. Sci. U. S. A. 86, 2525-2529.
Bujacz, G., Jaskolski, M., Alexandratos, J., Wlodawer, A., Merkel, G., Katz, R. A., and Skalka, A. M. (1995). High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J. Mol. Biol. 253, 336-346.
Bukrinsky, M. I., Haggerty, S., Dempsey, M. P., Sharova, N., Adzhubei, A., Spitz, L., Lewis, P., Goldfarb, D., Emerman, M., and Stevenson, M. (1993). A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666-669.
Bukrinsky, M. I., Sharova, N., Dempsey, M. P., Stanwick, T. L., Bukrinskaya, A. G., Haggerty, S., and Stevenson, M. (1992). Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc. Natl. Acad. Sci. U. S. A. 89, 6580-6584.
Bukrinsky, M. I., Sharova, N., McDonald, T. L., Pushkarskaya, T., Tarpley, W. G., and Stevenson, M. (1993). Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc. Natl. Acad. Sci. U. S. A. 90, 6125-6129.
Bushman, F. D. (1994). Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc. Natl. Acad. Sci. U. S. A. 91, 9233-9237.
Bushman, F. D., and Craigie, R. (1990) Sequence requirements for integration of Moloney murine leukemia virus DNA in vitro. J. Virol. 64, 5645-5648.
Bushman, F. D., and Craigie, R. (1990). Sequence requirements for integration of moloney murine leukemia virus DNA in vitro. J. Virol. 64, 5645-5648.
Bushman, F. D., and Craigie, R. (1991). Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proc. Natl. Acad. Sci. U. S. A. 88, 1339-1343.
Bushman, F. D., and Miller, M. D. (1997). Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J. Virol. 71, 458-64.
Bushman, F. D., Engelman, A., Palmer, L., Wingfieid, P., and Craigie, R. (1993). Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and Zinc binding. Proc. Natl. Acad. Sci. U. S. A. 90, 3428-3432.
Bushman, F. D., Fujiwara, T., and Craigie, R. (1990). Retroviral DNA integration directed by HIV integration protein in vitro. Science 249, 1555-1558.
Cannon, P. M., Wilson, W., Byles, W., Kingsman, S. M., and Kingsman, A. J. (1994). Human immunodeficiency virus type 1 integrase: effect on viral replication of mutations at highly conserved residues. J. Virol. 68, 4768-4775.
Carroll, R., Lin, J. T., Dacquel, E. J., Mosca, J. D., Burke, D. S., and ST. Louis, D. C. (1994). A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines. J. Virol. 68, 6047-6051.
Carteau, S., Batson, S. C., Poljak, L., Mouscadet, J.-F., Rocquigny, H., Darlix, J.-L., Roques, B. P., Kas, E., and Auclair, C. (1997). Human immunodeficiency virus type 1 nucleocapsid protein specifically stimulates Mg2+-dependent DNA integration in vitro. J. Virol. 71, 6225-6229.
Cepko, C. L., Roberts, B. E., and Mulligan, R. C. (1984). Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 37, 1053-1062.
Chen, Z., Yan, Y., Munshi, S., Li, Y., Zugay-Murphy, J., Xu, B., Witmer, M., Felock, P., Wolfe, A., Sardana, V., Emini, E. A., Hazuda, D., and Kuo, L. C. (2000). X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (Residues 50-293) - An initial glance of the viral DNA binding platform. J. Mol. Biol. 296, 521-533.
Cheng, S., Fockler, C., Barnes, W. M., and Higuchi, R. (1994). Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. U. S. A. 91, 5695-5699.
Chow, S. A., Vincent, K. A., Ellison, V., and Brown, P.O. (1992). Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255, 723-726.
Cohen, J. (1993). AIDS research: The mood is uncertain. Science 260, 1254-1261.
Coleman, J., Eaton, S., Merkel, G., Skalka, A. M., and Laue, T. (1999). Characterization of the self association of avian sarcoma virus integrase by analytical ultracentrifugation. J. Biol. Chem. 274, 32842-32846.
Collicelli, J., and Goff, S. P. (1988). Sequence and spacing requirements of a retrovirus integration site. J. Mol. Biol. 199, 47-59.
Craigie, R., Fujiwara, T., Gushman, F. D. (1990). The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62, 829-837.
Demarchi, F., D'agaro, P., Falaschi, A., and Giacca, M. (1992). Probing protein-DNA interactions at the LTR of HIV-1 by in vivo footprinting. J. Virol. 66, 2514-1518.
Demarchi, F., D'agaro, P., Falaschi, A., and Giacca, M. (1993). In vivo footprinting analysis of constitutive and inducible protein-DNA interaction at the LTR of HIV-1. J. Virol. 67, 7450-7460.
Donehower, L. A. (1988). Analysis of mutant Moloney murine leukemia viruses containing linker insertion mutations in the 3' region of pol. J. Virol. 62, 3958-3964.
Donzella, G. A., Jonsson, C. B. and Roth, M. J. (1996). Coordinated disintegration reactions mediated by Moloney murine leukemia virus integrase. J. Virol. 70, 3909-3921.
Drelich, M., Wilhelm, R., and Mous, J. (1992). Identification of amino acid residues critical for endonuclease and integration activities of HIV-1 IN protein in vitro. Virology 188, 459-468.
Du, Z., Ilyinskii, P. O., Lally, K., Desrosiers, R. C., and Engelman, A. (1997). A mutation in integrase can compensate for mutations in the simian immunodeficiency virus att site. J. Virol. 71, 8124-32.
Dyda, F., Hichman, A. B., Jenkins., T. M., Engelman, A. Craigie, R., and Davies, D. R. (1994). Crystal structure of the catalytic domain of HIV-1 integrase:similarity to other polynucleotidyl transferases. Science 266, 1981-1986.
Eagelman, A., Mizuuchi, K. and Craigie, R. (1991). HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67, 1211-1221.
Ellison, V., Abrams, H., Roe, T., Lifson, J., and Brown, P. O. (1990). Human immunodeficiency virus integration in a cell-free system. J. Virol. 64, 2711-2715.
Engelman, A., and Craigie, R. (1992). Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J. Virol. 66, 6361-6369.
Engelman, A., Bushman, F. D., and Craigie, R. (1993). Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J. 12, 3269-3275.
Engelman, A., Liu, Ying., Chen, H., Farzan, M., and Dyda, F. (1997). Structure-based mutagenesis of the catalytic domain of human immunodeficiency virus type 1 integrase. J. Virol. 71, 3507-14.
Engelman, A., Mizuuchi, K., and Craigie, R. (1991). HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67, 1211-1221.
Farnet, C. M. and Bushman, F. D. (1997). HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of pre-integration complexes in vitro. Cell 88, 483-492.
Farnet, C., and Haseltine, W. A. (1990). Integration of human immunodeficiency virus type 1 DNA in vitro. Proc. Natl. Acad. Sci. U. S. A. 87, 4164-4168.
Farnet, C., and Haseltine, W. A. (1991). Determination of viral proteins present in the Human immunodeficiency virus type 1 preintegration complex. J. Virol. 65, 1910-1915.
Fayet, O., Ramond, P., Polard, P., Prere, M. F., and Chandler, M. (1990). Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol. Microbiol. 4, 1771-1777.
Fesen, M. R., Kohn, K. W., Leteurter, F., and Pommier, Y. (1993). Inhibitors of human immunodeficiency virus integrase. Proc. Natl. Acad. Sci. U. S. A. 90, 2399-2403.
Fitzgerald, M. L., and Grandgenett, D. P. (1994). Retroviral integration: in vitro host site selection by avian integrase. J. Virol. 68, 4314-4321.
Fitzgerald, M. L., Vora, A. C., Zeh, W. C., and Grandgenett, W. P. (1992). Concerted integration of viral DNA termini by purified Avian myeloblastosis virus integrase. J. Virol. 66, 6257-6263.
Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R., and Steitz, T. A. (1988). Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. Natl. Acad. Sci. U. S. A. 85, 8924-8928.
Fujiwara, T., and Mizuuchi, K. (1988). Retroviral DNA integration: Structure of an integration intermediate. Cell 54, 97-504.
Gerton, J.L., Herschlag, D., and Brown, P. O. (1999). Stereospecificity of reactions catalyzed by HIV-1 integrase. J. Biol. Chem. 274, 33480-33487.
Goff, S. P. (1990). Integration of retroviral DNA into the genome of the infected cell. Cancer Cells 2, 172-178.
Goulaouic, H., and Chow, S. A. (1996). Directed integration of viral DNA mediated by fusion proteins consisting of human immunodeficiency virus type 1 integrase and Escherichia coli LexA protein. J. Virol. 70, 37-46.
Grandgenett, D. P., and Mumm, S. R. (1990). Unraveling retrovirus integration. Cell 60, 3-4.
Grandgenett, D. P., Inman, R. B., Vora, A. C., and Fitzgerald, M. L. (1993). Comparison of DNA binding and integration half-site selection by avian myeloblastosis virus integrase. J. Virol. 67, 2628-2636.
Greenwald, J., Le, V., Butler, S. L., Bushman, F. D., and Choe, S. (1999). The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Biochemistry 38, 8892-8898.
Gulizia, J., Dempsey, M. P., Sharova, M., Bukrinsky, M. I., Spitz, L., Goldfarb, D., and Stevenson. M. (1994). Reduced nuclear import of HIV-1 preintegration complexes in the presence of a prototypic nuclear targeting signal. J. Virol. 68, 2021-2025.
Haseltine, W. A. (1992a). Molecular biology of the AIDS virus: ten years of discovery - hope for the future; in Rossi, G. B., Beth-Giraldo, E., Chieco-Bianchi, L., Dianzani, F., Giraldo, G., and Verani, P. (eds) Science challenging AIDS. Basel, Karger. pp. 71-106.
Haseltine, W. A. (1992b). Molecular biology of the AIDS virus: ten years of discovery-hope for the future. Science 260, 71-106.
Hickman, A. B., Palmer, I., Engelman, A. Craigie, R., and Wingfield, P. (1994). Biophysical and enzymatic properties of the catalytic domain of HIV-1 integrase. J. Biol. Chem. 269, 29279-29287.
Hoang, T. T., Kutchma, J., Becher, A., and Schweizer, H. P. (2000). Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43, 59-72.
Jenkins, T. M., Engelman, A., Ghirlando, R., and Craigie, R. (1996). A soluble active mutant of HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization. J. Biol. Chem. 271, 7712-7718.
Jenkins, TM., Esposito, D., Engelman, A., and Craigie, R. (1997). Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking. EMBO J. 16, 6849-6859.
Johnson, M. D., McClure, M. A., Feng, D. F., Gray, J., and Doolittle, R. F. (1986). Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc. Natl. Acad. Sci. U. S. A. 83, 7648-7652.
Jones, K. S., Coleman, J., Merkel, G. W., Laue, T. M., and Skalka, A. M. (1992). Retroviral integrase functions as a multimer and can turn over catalytically. J. Biol. Chem. 287, 16037-16040.
Kahn, E., Mack, J. P. G., Katz, R. A., Kulkosky, J., and Skalka, A. M. (1991). Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. 19, 851-860.
Katz, R. A., Merkel, G., and Skalka, A. M. (1996). Targeting of retroviral integrase by fusion to a heterologous DNA binding domain: in vitro activities and incorporation of a fusion protein into viral particles. Virology 217, :178-190.
Katz, R. A., Merkel, G., Kulkosky, J., Leis, J., and Skalka, A. M. (1990). The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell 63, 87-95.
Katzman, M., Katz, R. A., Skalka, A. M., and Leis, J. (1989). The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J. Virol. 63, 5319-5327.
Katzman, M., Mack, J. P. G., Skalka, A. M., and Leis, J. (1991). A covalent complex between retroviral integrase and nicked substrate DNA. Proc. Natl. Acad. Sci. U. S. A. 88, 4695-4699.
Katzman, M., Sudol, M., Pufnock, J. S., Zeto, S., and Skinner, L. M. (2000). Mapping target site selection for the non-specific nuclease activities of retroviral integrase. Virus Res. 66, 87-100.
Kitamura, Y., Lee, Y. M., and Coffin, J. M. (1992). Nonrandom integration of retroviral DNA in vitro: effect of CpG methylation. Proc. Natl. Acad. Sci. U. S. A. 89, 5532-5536.
Kjan, E., Mack, J. P. G., Katz, R. A., Kulkosky, J., and Skalka, A. M. (1991). Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. 19, 851-860.
Klement, V., Rowe, W. P., Hartley, J. W., and Pugh, W. E. (1969). Mixed culture cytopathogenicity: a new test for growth of murine leukemia viruse in tissue culture. Proc. Natl. Acad. Sci. U. S. A. 63, 753-758.
Krogstad, P. A., and Champoux, J. J. (1990). Sequence-specific binding of DNA by the Moloney murine leukemia virus integrase protein. J. Virol. 64, 2796-2801.
Kulkosky, J., Jones, K. S., Katz, R. A., Mack, J. P. G., and Skalka, A. M. (1992). Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral / retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12, 2331-2338.
Kulkosky, J., Katz, R. A., Merkel, G., and Skalka, A. M. (1995). Activities and substrate specificity of the evolutionarily conserved central domain of retroviral integrase. Virol. 206, 448-456.
LaFemina, R. L., Callahan, P. L., and Cordingley, M. G. (1991). Substrate specificity of recombinant human immunodeficiency virus integrase protein. J. Virol. 65, 5624-5630.
Landau, N. R., and Littman, D. R. (1992). Packaging system for rapid production of murine leukemia virus vectors with variable tropism. J. Virol. 66, 5110-5113.
Lapadat-Tapolski, M., De Rocquigny, H., Van Gent, D. C., Rocques, B., Plasterk, R. H. A., and Darlix, J. L. (1993). Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle. Nucleic Acids Res. 21, 831-839.
Leavitt, A. D., Shiue, L., and Varmus, H. E. (1993). Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. J. Biol. Chem. 268, 2113-2119.
Lee, J., Tribble, G., and Jayaram, M. (2000). Resolution of tethered antiparallel and parallel holliday junctions by the flp site-specific recombinase. J. Mol. Biol. 296, 403-419.
Lee, M. S. and Craigie, R. (1994). Protection of retroviral DNA from autointegration: involvement of a cellular factor. Proc. Natl. Acad. Sci. U. S. A. 91, 9823-9827.
Lee, S. P., Xiao, J., Knutson, J. R., Lewis, M. S., and Han, M. K. (1997). Zn2+ promotes the self-association of human immunodeficiency virus type-1 integrase in vitro. Biochemistry 36, 173-180.
Li, Z.-H., Liu, D-.P., and Liang, C.-C. (1999). Modified inverse PCR method for cloning the flanking sequences from human cell pools. Biotechniques 27, 660-662.
Liu, H., Wu, X., Xiao, H., Conway, J. A., and Kappes, J. C. (1997). Incorporation of functional human immunodeficiency virus type 1 integrase into virions independent of the Gag-Pol precursor protein. J. Virol. 71, 7704-10.
Lobel, L. I., Murphy, J. E., and Goff, S. P. (1989). The palindromic LTR-LTR junction of Moloney murine leukemia viruses not an efficient substrate for proviral integration. J. Virol. 63, 2629-2637.
Lorbach, E., Christ, N., Schwikardi, M., and Droge, P. (2000). Site-specific recombination in human cells catalyzed by phage lambda integrase mutants. J. Mol. Biol. 296, 1175-1181.
Lubkowski, J., Dauter, Z., Yang, F., Alexandrator, J., Merkel, G. Skalka, A. M., and Wlodawer, A. (1999). Atomic resolution structures of the core domain of avian sarcoma virus integrase and its D64N mutant. Biochemistry 38, 13512-13522.
Lutzke, R. A. P., Vink, C., and Plasterk, R. H. A. (1994). Characterization of the minimal DNA-binding domain of the HIV integrase protein. Nucleic Acids Res. 22, 4125-4131.
Mann, R., Mulligan, R. C., and Baltimore, D. (1983). Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153-159.
Meiering, C. D., Comstock, K. E., and Linial, M. L. (2000). Multiple integrations of human foamy virus in persistently infected human erythroleukemia cells. J. Virol. 74, 1718-1726.
Miller, A. D., and Verma, I. M. (1984). Two base changes restore infectivity to a noninfectious molecular clone of Moloney murine leukemia virus (pMLV-1). J. Virol. 49, 214-222.
Miller, M. D., Bor, Y. C., Bushman, F. (1995a). Target DNA capture by HIV-1 integration complexes. Curr. Biol. 5, 1047-1056.
Miller, M. D., Wang, B., and Bushman, F. D. (1995b). Human immunodeficiency virus type 1 preintegration complexes containing discontinuous plus strands are competent to integrate in vitro. J. Virol. 69, 3938-3944.
Mitchell, P. J., and Tjlan, R. (1989). Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371-378.
Mitchell, P. J., and Tjlan, R. (1989). Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371-378.
Mizuuchi, K. (1992). Polynucleotidyl transfer reactions in transpositional DNA recombination. J. Biol. Chem. 267, 21273-21276.
Morgan, A.L., and Katzman, M. (2000). Subterminal viral DNA nucleotides as specific recognition signals for human immunodeficiency virus type 1 and visna virus integrases under magnesium-dependent conditions. J. Gen. Virol. 81, 839-849.
Murphy, J., and Goff, S. P. (1992). A mutation at one end of Moloney murine leukemia virus DNA blocks cleavage of both ends by the viral integrase in vivo. J. Virol. 66, 5092-5095.
Panganiban, A. T., and Temin, H. M. (1983). The terminal nucleotides of retrovirus DNA are required for integration but not virus production. Nature 306, 155-160.
Panganiban, A. T., and Temin, H. M. (1984). The retrovirus pol gene encodes a product required for DNA integration: identification of a retrovirus int locus. Proc. Natl. Acad. Sci. U. S. A. 81, 7885-7889.
Porstmann, T., Meissner, K., Glaser, R., Dopel, S-H., and Sydow, G. (1991). A sensitive non-isotopic assay specific for HIV-1 associated reverse transcriptase. J. Virol. Meth. 31, 181-188.
Pruss, D., Bushman, F. D., and Wolffe, A. P. (1994). Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc. Natl. Acad. Sci. USA 91, 5913-5917.
Pryciak, P. M., and Varmus, H. E. (1992). Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selec-tion. Cell 69, 769-780.
Ratner, L., Haseltine, W., Patarca, T., Livak, K. J., Starcich, B., Josephs, S. F., Doran, E. R., Rafalski, J. A., Whitehorn, E. A., Baumeister, K., Ivanoff, L., Petteway Jr, S.R., Pearson, M. L., Lautenberger, J. A., Papaas, T. S., Ghrayeb, J., Chang, N. T., Gallo, R. C., and Wong-Staal, F. (1985). Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313, 277-284.
Rodner, B., Vingamartins, C., and Mullerlantzsch, N. (1993). Expression of a processed and a nonprocessed form of the integrase protein of HIV-1 in the baculovirus system. Archives Virol. 131, 177-183.
Roe, T., Chow, S. A. and Brown, P. O. (1997). 3’-end processing and kinetics of 5’-end joining during retroviral integration in vivo. J. Virol. 71, 1334-1340.
Rohdewohld, H., Weiher, H., Reik, W., Jaenisch, R., and Breindl, M. (1987). Ret-rovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J. Virol. 61, 336-343.
Roth, M. J., Schwartzberg, P. L., and Goff, S. P. (1989). Structure of the termini of DNA intermidiates in the integration of retroviral DNA dependence on IN function and terminal DNA sequence. Cell 58, 47-54.
Rowe, W. P., Pugh, W. E., and Hartley, J. W. (1970). Plaque assay techniques for murine leukemia viruses. Virology 42, 1136-1139.
Schauer, M., and Billch, A. (1992). The N-terminal region of HIV-1 integrase is required for integration activity, but not for DNA binding. Biochem. Biophys. Res. Commun. 185, 874-880.
Schwartzberg, P., Colicelli, J., and Goff, S. P. (1984). Construction and analysis if deletion mutations in the pol gene of Moloney murine leukemia virus: a new viral function required for productive infection. Cell 37, 1043-1052.
Sherman, P. A., and Fyfe, J. A. (1990). Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving. Proc. Natl. Acad. Sci. U. S. A. 87, 5119-5123.
Sherman, P. A., Dickson, M. L., and Fyte, J. A. (1992). Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reaction. J. Virol. 66, 3593-3601.
Shih, C.-C., Stoye, J. P., and Coffin, J. M. (1988). Highly preferred targets for retroviral integration. Cell 53, 531-537.
Shinnick, T. M., Lerner, R. A., and Sutcliffe, J. G. (1981). Nucleotide sequence of Moloney murine leukemia virus. Nature 293, 543-548.
Shoemaker, C., Goff, S., Gilboa, E., Paskind, M., Mitra, S. W., and Baltimore, D. (1980). Structure of a cloned circular moloney murine leukemia virus DNA molecule containing an inverted segment: implications for retrovirus integration. Proc. Natl. Acad. Sci. U. S. A. 77, 3932-3936.
Shoemaker, C., Hoffmann, J., Goff, S. P., and Baltimore, D. (1981). Intramolecular integration within Moloney murine leukemia virus DNA. J Virol. 40, 164-172.
Silver, J., and Keerikatte, V. (1989). Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J. Virol. 63, 1924-1928.
Stevenson, M., Haggerty, S., Lamonica, C. A., Meier, C. M., Welch, S. K., and Wasiak, A. J. (1990). Integration is not necessary for expression of human immunodeficiency virus type 1 protein production. J. Virol. 64, 2421-2425.
van Gent, D. C., Oude Groeneger, A. A. M., and Plasterk, R. H. A. (1992). Mutational analysis of the integrase protein of Human immunodeficiency virus type 2. Prol. Natl. Acad. Sci. U. S. A. 89, 9598-9602.
van Gent, D.C., Elgersma, Y., Bolk, M. W. J., Vink, C., and Plasterk, R. H. A. (1991). DNA binding properties of the integrase proteins of Human immunodeficiency virus type 1 and 2. Nucleic Acids Res. 19, 3821-3827.
Varmus, H. (1988). Retroviruses. Science 240, 1427-1433.
Varmus, H. E., and Swanstrom, R. (1982). Replication of retroviruses; in Weiss, R., Teich, N., Carmus, H., and Coffin, J. (eds): RNA tumor viruses. Cold Spring Harbor, Cold Spring Harbor Laboratory. pp. 369-512.
ven Gent, D. C., Oude Groeneger Oude, A. A. M., and Plasterk, R. H. A. (1992). Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proc. Natl. Acad. Sci. U. S. A. 89, 9598-9602.
ven Gent, D. C., Vink, C., Oude Groeneger, A. A. M. and Plasterk, R. H. A. (1993). Complementation between HIV integrase proteins mutated in different domains. EMBO J. 12, 3261-3267.
Vicenzi, E., Dimitrov, D. S., Engelman, A., Migone, T-S., Purcell, D. F. J., Leonard, J., Englund, G., and Martin, M. A. (1994). An integration-defective U5 deletion mutant of human immunodeficiency virus type 1 reverts by eliminating additional long terminal repeat sequences. J. Virol. 68, 7879-7890.
Vijaya, S., Steffen, D. L., and Robinson, H. L. (1986). Acceptor sites forretroviral integrations map near DNase I-hypersensitive sites in chromatin. J. Virol. 60, 683-692.
Vink, C., Groenink, M., Elgersma, T., Fouchier, R. A. M., Termette, M., and Plasterk, R. H. A. (1990). Analysis of the junctions between Human immunodeficiency virus type 1 proviral DNA and human DNA. J. Virol. 64, 5626-5627.
Vink, C., Lutzke, R. A. P., and Plasterk, R. H. A. (1994). Formation of a stable complex between the human immunodeficiency virus integrase protein and viral DNA. Nucleic Acids Res. 22, 4103-4110.
Vink, C., Oude Groeneger, A. A. M., and Plasterk, R. H. A. (1993). Identification of the catalytic and DNA-binding region of human immunodeficiency virus type 1 integrase protein. Nucleic Acids Res. 21, 1419-1425.
Vink, C., van Gent, D. C., and Plasterk, R. H. A. (1990). Integration of human immunodeficiency virus types 1 and 2 DNA in vitro by cytoplasmic extracts of moloney murine leukemia virus-infected mouse NIH 3T3 cells. J. Virol. 64, 5219-5222.
Vink, C., van Gent, D. C., Elgersma, YPE., and Plasterk, R. H. A. (1991). Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage. J. Virol. 65, 4636-4644.
Vink, C., Yeheskiely, E., van der Marel, G. A., van Boom, J. H., and Plasterk, R. H. A. (1991). Site-specific hydrolysis and alcoholysis of human immunodeficiency virus DNA termini mediated by the viral integrase protein. Nucleic Acids Res. 19, 6691-6698.
Vora, A. C., Fitzgerald, M. L., and Grandgenett, D. P. (1990). Removal of 3'-OH-terminal nucleotides from blunt-ended long terminal repeat termini by the avian retrovirus integration protein. J. Virol. 64, 5656-5659.
Wain-Hobson, S., Sonigo, P., Danos, O., Cole, S., and Alizon, M. (1985). Nucleotide sequence of the AIDS virus, LAV. Cell 40, 9-17.
Watson, J. D., Gilman, M., Witkowski, J., and Zoller, M. (1992). Recombinant DNA. Scientific American Books pp. 225-227.
Wattel, E., Vartanian, J.-P., Pannertier, C., and Wain-Hobson. S. (1995). Clonal expansion of human T-cell leukemia virus type I – infected cells in asymptomatic and symptomatic carriers without malignancy. J. Virol. 69, 2863-2868.
Wei, S.-Q., Mizuuchi, K., and Craigie, R. (1997). A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J. 16, 7511-20.
Yang, Z.-N., Mueser, T. C., Bushman, F. D., and Hyde, C. C (2000). Crystal structure of an active two-domain derivative of rous sarcoma virus integrase. J. Mol. Biol. 296, 535-548.