研究生: |
涂健軒 Tu, Jian-Syuan |
---|---|
論文名稱: |
應用於雙雷達移動機器人之自動探索建圖系統 An Automatic Exploration and Mapping System Applied to a Mobile Robot with Dual Lidars |
指導教授: |
馬席彬
Ma, Hsi-Pin |
口試委員: |
黃稚存
Huang, Chih-Tsun 黃元豪 Huang, Yuan-Hao 楊家驤 Yang, Chia-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 機器人作業系統 、雙雷達 、主動式同時定位與地圖構建 、移動機器人 、導航 、路徑規劃 、佔據柵格地圖 、麥克納姆輪 |
外文關鍵詞: | Robot Operating System (ROS), Dual Lidar, Active Simultaneous Localization and Mapping (SLAM), Mobile Robot, Navigation, Path Planning, Occupancy Grid Map, Mecanum Wheel |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在當今ROS 機器人探索的研究當中,自動導航是一個熱門的研究議題,而在實行導航功能之前,機器人必須在未知的環境當中,能夠模擬定位並建立建圖,對於地圖建立有兩種主要的方法,一種是使用手動控制機器人建圖,另一種為加入導航功能包,在RViz 可視化界面下,設定導航路徑讓機器人沿著規劃路徑建起地圖,而兩種方法都屬於需要人力的方法。
在本篇論文中,以使用全向輪的ROS 移動機器人為基礎,搭配兩個掃瞄範圍為270° 的雷達與里程計實行Gmapping 演算法建圖,再透過邊界探索的技術結合ROS 官方導航系統架構,實現A* 與動態窗口的軌跡移動演算法(Dynamic Window Approach,DWA),完成了不需要花費人力的自動探索建圖系統,整個系統切分成建圖、目標選擇以及探索運動三個階段,每個階段有可以因應場域選擇較有優勢的演算法,最後實驗的地圖結果會根據最近平均距離(Average Distance to the Nearest Neighbor,ADNN) 比較公式作比較,該方法是以基準地圖比較自動探索建出的地圖,最終本論文的最佳ADNN 為5.75 公分,與其他論文以Gmapping 獲得2.65 公分到6.11 公分的成果比較,是介於中間的準確度表現,能建出良好準確度的地圖。
本篇論文的研究也實際應用在工廠的場域當中,其中關於地圖特徵區的劃分,如充電樁、置物架子與木箱等等障礙物,在實行演算法之前,已明確定義各個特徵區的規格,最後製成地圖中也能清楚的匡列工廠內所需標明的特徵區與實際場域相符。
In this paper, we use mobile robot with dual 270° lidars and mecanum wheels in robot operating system (ROS) to construct an autonomous exploration and mapping system. There are three main stages in the system: Mapping, Goal Selection and Exploration.
We use the Gmapping algorithm to locate the robot’s pose and build the 2D map of environment, and combine the frontier detector and ROS navigation stack with A* and dynamic window approach (DWA) algorithm to be the global planner and local planner.
To confirm the system performance, we test the system in a 11 x 10 m2 factory environment. There are chargers, shelves and boxes as obstacles and map features in the experimental environment. Our verification method is to use a ground truth map compare with the map which the autonomous exploration system build and calculate their average distance to the nearest neighbor (ADNN) which represent
the map errors.
According to the experiment result, the map build from our system can get ADNN value of 5.75 cm. Compared to other research that can get 2.65 cm to 6.11 cm ADNN values with Gmapping algorithm. Our system can build a whole map with good accuracy. We can also clearly identify the location of the feature area of factory on the visual map.
[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng et al., “ROS: an open-source robot operating system,” in ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.
[2] “Robot operating system.” [Online]. Available: https://www.ROS.org
[3] I. Lluvia, E. Lazkano, and A. Ansuategi, “Active mapping and robot exploration: A survey,” Sensors, vol. 21, no. 7, p. 2445, 2021.
[4] R. Yagfarov, M. Ivanou, and I. Afanasyev, “Map comparison of lidar-based 2D SLAM algorithms using precise ground truth,” in 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, 2018, pp. 1979–1983.
[5] A. Topiwala, P. Inani, and A. Kathpal, “Frontier based exploration for autonomous robot,” arXiv preprint arXiv:1806.03581, 2018.
[6] A. S. Steve Mussmann, “Graph-based searching.” [Online]. Available: https://cs.stanford. edu/people/abisee/gs.pdf
[7] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for path planning,” 1998.
[8] “Comparison of ROS and ROS2.” [Online]. Available: https://www.generationrobots. com/blog/en/ROS-vs-ROS2/
[9] I. Malavolta, G. A. Lewis, B. Schmerl, P. Lago, and D. Garlan, “Mining guidelines for architecting robotics software,” Journal of Systems and Software, vol. 178, p. 110969, 2021.
[10] “RViz - ROS wiki.” [Online]. Available: http://wiki.ROS.org/rviz
[11] “Gazebo.” [Online]. Available: https://classic.gazebosim.org/tutorials?cat=connect_ROS
[12] “rqt - ROS wiki.” [Online]. Available: http://wiki.ROS.org/rqt
[13] “Different kinds of wheels of mobile robots.” [Online]. Available: https://mobilerobotkit.
com/omni-wheels.html
[14] L. Sui and L. Lin, “Design of household cleaning robot based on low-cost 2D Lidar SLAM,” in 2020 International Symposium on Autonomous Systems (ISAS). IEEE, 2020, pp. 223–227.
[15] C. Medina Sánchez, M. Zella, J. Capitán, and P. J. Marrón, “From perception to navigation in environments with persons: An indoor evaluation of the state of the art,” Sensors, vol. 22, no. 3, p. 1191, 2022.
[16] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with rao-blackwellized particle filters,” IEEE transactions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.
[17] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable SLAM system with full 3D motion estimation,” in 2011 IEEE international symposium on safety, security, and rescue robotics. IEEE, 2011, pp. 155–160.
[18] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D Lidar SLAM,” in 2016 IEEE international conference on robotics and automation (ICRA). IEEE, 2016, pp. 1271–1278.
[19] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile and accurate monocular SLAM system,” IEEE transactions on robotics, vol. 31, no. 5, pp. 1147–1163, 2015.
[20] I. R. M. D. R. W. Group et al., “IEEE standard for robot map data representations for navigation,” 2015.
[21] S. S. Chandra, M. Kulshreshtha, and P. Randhawa, “A review of trash collecting and cleaning robots,” in 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO). IEEE, 2021, pp. 1–5.
[22] B. Zi, J. Santos, H. Zheng et al., “A new metric for assessing the performance of 2D Lidar SLAMs,” in 6th Collaborative European Research Conference. CEUR Workshop Proceedings, 2021, pp. 64–77.
[23] J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2D SLAM techniques available in robot operating system,” in 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR). IEEE, 2013, pp. 1–6.
[24] X. Fan, Y. Wang, and Z. Zhang, “An evaluation of lidar-based 2D SLAM techniques with an exploration mode,” in Journal of Physics: Conference Series, vol. 1905, no. 1. IOP Publishing, 2021, p. 012021.
[25] P. Qu, C. Su, H. Wu, X. Xu, S. Gao, and X. Zhao, “Mapping performance comparison of 2D SLAM algorithms based on different sensor combinations,” in Journal of Physics: Conference Series, vol. 2024, no. 1. IOP Publishing, 2021, p. 012056.
[26] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation
CIRA’97.’Towards New Computational Principles for Robotics and Automation’. IEEE, 1997, pp. 146–151.
[27] M. Keidar and G. A. Kaminka, “Robot exploration with fast frontier detection: Theory and experiments,” in Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 1, 2012, pp. 113–120.
[28] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The international journal of robotics research, vol. 20, no. 5, pp. 378–400, 2001.
[29] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.
[30] Z. Wu, Z. Meng, W. Zhao, and Z. Wu, “Fast-RRT: A RRT-based optimal path finding method,” Applied Sciences, vol. 11, no. 24, p. 11777, 2021.
[31] D. Rachmawati and L. Gustin, “Analysis of Dijkstra’s algorithm and A* algorithm in shortest path problem,” in Journal of Physics: Conference Series, vol. 1566, no. 1. IOP
Publishing, 2020, p. 012061.
[32] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.
[33] C. Rosmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Trajectory modification considering dynamic constraints of autonomous robots,” in ROBOTIK 2012; 7th German Conference on Robotics. VDE, 2012, pp. 1–6.
[34] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Efficient trajectory optimization using a sparse model,” in 2013 European Conference on Mobile Robots. IEEE, 2013, pp. 138–143.
[35] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o: A general framework for graph optimization,” in 2011 IEEE International Conference on Robotics and Automation. IEEE, 2011, pp. 3607–3613.
[36] Y. K. Tee and Y. C. Han, “Lidar-based 2D SLAM for mobile robot in an indoor environment: A review,” in 2021 International Conference on Green Energy, Computing and Sustainable Technology (GECOST). IEEE, 2021, pp. 1–7.
[37] A. L. Ballardini, S. Fontana, A. Furlan, and D. G. Sorrenti, “ira_laser_tools: a ROS laserscan manipulation toolbox,” arXiv preprint arXiv:1411.1086, 2014.
[38] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit et al., “FastSLAM: A factored solution to the simultaneous localization and mapping problem,” Aaai/iaai, vol. 593598, 2002.
[39] “The package of explore_lite.” [Online]. Available: http://wiki.ROS.org/explore_lite
[40] Y. Abdelrasoul, A. B. S. H. Saman, and P. Sebastian, “A quantitative study of tuning ROS gmapping parameters and their effect on performing indoor 2D SLAM,” in 2016 2nd IEEE international symposium on robotics and manufacturing automation (ROMA). IEEE, 2016, pp. 1–6.
[41] J. Braun, T. Brito, J. Lima, P. Costa, P. Costa, and A. Nakano, “A comparison of A* and RRT* algorithms with dynamic and real time constraint scenarios for mobile robots.” in SIMULTECH, 2019, pp. 398–405.