簡易檢索 / 詳目顯示

研究生: 李建霖
論文名稱: 發色團與嵌段共聚物P4VP-PCL錯合系統之相行為與顏色可調整性研究
Phase Behavior and Color Tuning of Poly(4-vinyl pyridine)-b-Poly(ε-caprolactone) Complexed with Chromophores
指導教授: 何榮銘
口試委員: 陳信龍
何榮銘
蔡敬誠
孫亞賢
蔣酉旺
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 116
中文關鍵詞: 發色團嵌段共聚物錯合相行為顏色
外文關鍵詞: block copolymer, P4VP-PCL, chromophore, charge transfer, phase behavior, color tuning
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A series of poly(4-vinylpyridine)-b-poly(ε-caprolactone) (P4VP-PCL) diblock copolymers have been synthesized and used for the formation of nanostructured materials with tunable colors arising from the association of chromophores with P4VP block in P4VP-PCL. The association of chromophores leads to the bathochromical shifts of charge transfer absorption peaks resulting in the color appearance into visible region. To achieve the formation of well-controlled, nanostructured materials, the phase behavior of the mixtures of chromophore/P4VP-PCL was systematically examined. As evidenced by transmission electron microscopy and small angle X-ray scattering (SAXS), the phase transformation of self-assembled nanostructures can be easily induced by adding chromophores due to the association of 2-methylidenepropanedinitrile in the chromophores with the lone-pair electron of nitrogen in P4VP block (that is the increase on the effective volume fraction of P4VP, as identified by SAXS experiments through one-dimensional correlation function). Accordingly, transparent thin films of chromophore/P4VP-PCL mixtures can be fabricated and the appearance of color in visible region for the mixtures can be tuned by exploiting the bathochromical shifts of charge transfer absorption peaks. Systematic studies with respect to the color tuning by using various stimuli such as temperature, moisture and pH for chromophore/P4VP-PCL thin-film samples were conducted. The dissociation behavior can be easily observed while elevating temperature higher to 160oC. However, no recognized change can be found after dissociation even with temperature lower than ambient temperature; we speculate that the irreversible process in response to temperature is attributed to the diffusion limitation for re-association chromophores with P4VP. By contrast, the color change of chromophore/P4VP-PCL mixtures in response to the pH variation can be sensitive because of the replacement of the protonation between pyridine and H+ with the addition of HCl solution. The color change from transparent to red can also be observed by adding NaOH solution, demonstrating the reversibility of the association and dissociation processes. As a result, by taking advantage of charge transfer, well-defined nanostructured materials resulting from mixing of chromophore and P4VP-PCL offer the possibilities to create stimuli-responsive transparent polymeric materials with tunable color.


    Abstract I Contents III List of Table V List of Figures V Chapter 1 Introduction 1 1.1 Phase Behavior of BCPs 2 1.2 BCPs Associated with Species 4 1.2.1 Hydrogen bonding 6 1.2.2 Coordination 7 1.2.3 Ionic bonding 9 1.2.4 Charge transfer complexation 10 1.3 Phase Behavior of Inorganic/BCP Hybrids 14 1.3.1 Phase transformation 19 1.3.2 Segregation strength 22 1.3.3 Effective excluded volume 24 1.4 Phase Behavior of Organic/BCP mixtures 28 1.4.1 Phase transformation 30 1.4.2 Segregation strength 35 1.4.3 Effective excluded volume 38 1.5 Chromophore and Color 41 1.5.1 Color formation 43 1.5.2 Absorption 46 1.5.3 Chromophores in optical application 50 1.6 Color Tuning in Polymeric Materials 52 1.6.1 Color tuning in hydrogen-boned liquid crystalline BCPs 52 1.6.2 Photonic crystals with color tuning in BCPs 54 1.6.3 Colorimetric sensing of Biomolecules via Electron Transfer process in polymers………………………………………...57 1.6.4 Colorimetric changing of Thermo-Reponsive Inorganic/BCPs hybrids……………………………………………………...58 1.6.5 Colorimetric changing of pH-Reponsive BCPs of hydrogel sphere association with Inorganic………………………….60 Chapter 2 Objectives 63 Chapter 3 Materials and Experimental Methods 65 3.1 NMR analysis of P4VP-PCL BCPs 65 3.2 Chromophores 68 3.3 Sample Preparation for P4VP-PCL BCPs 69 3.3.1 Sample preparation for charge transfer complexation 70 3.4 Instruments 70 3.4.1 Differential Scanning Calorimetry (DSC) 71 3.4.2 Electron Transmission Microscopy (TEM) 71 3.4.3 Small Angle X-ray Scattering (SAXS) 72 3.4.4 Ultraviolet Absorption Photometer (UV) 72 3.4.5 Fourier Transform Infrared Spectrometer (FTIR) 72 3.4.6 Cyclic voltammetry (CV)…………………………………...72 Chapter 4 Results and Discussion … 79 4.1 Association of chromophores with P4VP………………………....74 4.2 Phase behavior of 1CN-IN/P4VP-PCL mixtures………………....78 4.3 Effective excluded volume .80 4.4 Domain swelling in various chromphore/P4VP-PCL mixtures…...83 4.5 Color tuning for charge transfer complex films…………………..92 Chapter 5 Conclusions 105 Chapter 6 References 107 List of Tables Table 1-1 Excitation of some chromophores 69 Table 3.1 Characterization of P4VP-PCL BCPs 68 Table 4-1 Characterization of inorganic hybrids68 and chromophores mixtures…………………………………………………………………...83 Table 4-2 Characterization of chromophores…………………………….92 Table 4-3 Characterization of Various Mixtures…………………………..92 List of Figures Figure 1-1. (a) Schematic illustration of the self-assembly and self ordering behavior of BCPs at which the scale of microphase separation is about tens of nanometer. (b) Schematic phase diagram showing the various “classical” BCP morphologies adopted by non-crystalline linear diblock copolymer....3 Figure 1-2. Types of bonds and interactions applicable to molecular self assembly…………….………………………………………………….…..5 Figure 1-3. TEM micrographs of a polystyrene-block-poly (1, 2-butadiene)-block-poly(tertbutyl methacrylate) triblock copolymer that is 18% hydrolyzed and polystyrene-block-poly(2-vinylpyridine) diblock copolymer. S denotes polystyrene, V denotes poly(2-vinylpyridine), T/A denotes the partially (18%) hydrolyzed poly(tert-butyl methacrylate), and B denotes poly(1,2-butadiene)………………………………………………..8 Figure 1-4. (a) Sketch of the “cherry”- an the “raspberry”-like morphology of block copolymer supported metal colloids. (b) SAXS diffractograms of a sample of Au/N=1/9, reduced with hydrazine (σ) or NaBH4(+) The straight line is a fit of the data with the form factor of spheres with d = 9.8 nm and a gaussian width of the size distribution ofσ=0.095 9 Figure 1-5. AFM height images of micellar thin films: (a) as-cast film; (b) film treated in 0.04 M NaOH(aq). TEM images of films treated in (c) 0.0156 M Ca(OH)2(aq) and (d) 0.4 mM PbAc2(aq) 11 Figure 1-6. TEM images of annealed bulk samples after evaporation of xylene: (a) pure PS-b-P4VP, (b) PS-b-P4VP/C60 (95/5 w/w) prepared from a fresh purple xylene solution, and (c) PS-b-P4VP/C60 (95/5 w/w) prepared from an aged 3 months old brown xylene solution. The samples have been stained in I2 vapor.. 14 Figure 1-7. (a) Schematic illustration of the approach for synthesizing organically modified silica mesostructures. Left: the morphology of the precursor block copolymer. Right: the resulting morphologies after addition of various amounts of the metal alkoxides. (b) SAXS profiles of PI-PEO with different amounts of the metal alkoxides. TEM images of (c) neat PI-PEO and its hybrid (d), at which (c) and (d) represents the sphere and cylinder phase, respectively. 16 Figure 1-8. (a) Schematic illustration of the phase transformation from cylinder to lamellae phase in CdS/PS-P4VP hybrids. TEM images of (b) PS-P4VP BCP and its hybrid with (c) 7 and (d) 28 wt % CdS NPs. (e) Corresponding SAXS profiles for the PS-P4VP BCP and its hybrid with 7 and 28 wt % CdS NPs. 17 Figure 1-9. Cross-sectional TEM images of a film of gold particles/PS-b-P2VP (Mn = 59 kg mol–1). The overall volume fraction of PS-coated gold particles is 0.5. The distance from the top of the film (L) is a) 27, b) 36, c) 52, and d) 95 lm. The corresponding concentration of gold particles for different depth is calculated in below curve. All scale bars are 100 nm 18 Figure 1-10. TEM micrographs of the Au3+/V3C5 hybrids at the hybrid ratio of (a) 1/7, (b) 1/3 and (c) 1/1. The P4VP microdomains appear dark due to the RuO4 staining while the microdomains of PCL appear bright. The insets of (a) and (b) show the unstained results at equal magnification. Besides, the inset of (c) shows the aggregates of Au3+ ions at high magnification67 20 Figure 1-11. One-dimensional SAXS profiles of (a) V3C5 and its hybrids at hybrid ratio of (b) 1/7, (c) 1/3 and (d) 1/1. It indicates that the phase transformation from original cylinder to lamellar and disorder-like phase can be achieved by increasing the adding amounts of Au3+ ions67.... 21 Figure 1-12. Domain spacing, D, vs chain length, N, in a double-logarithmic plot. Triangle: data from PS-PMMA copolymers; diamond: data from corresponding PS -PMMA copolymers with lithium complexes. Full lines: nonlinear least-squares fitting with an R2 of 0.999 for each line in the range N =535-1102.70,71………………………..…………23 Figure 1-13. One-dimensional correlation function of (a) Au3+/V4C7 hybrids; (b) Au3+/V2C7 hybrids in which the thickness of lamellar long period was calculated by the position of first peak and the average thickness of the thinner layers was determined by the connection between tangent and baseline of the first wave trough68. 27 Figure 1-14. One of the potential scenarios to construct hierarchically self-assembled polymeric structures. Construction units of different sizes allow a natural selection of different self-assembled length scales. Structural hierarchy is shown for amphiphiles complexed with both block copolymers (Ikkala and ten Brinke et al.16,72,73) and rod-like polymers (in collaboration with Monkman and Serimaa et al.74). Combination of block copolymers and mesogenic oligomers has been described by Thomas and Ober et al.75 Combination of polymeric colloidal spheres and block copolymers has been reported by Kramer and Fredrickson et al18 29 Figure 1-15. Cartoon of lamellar-in-lamellar self-assembly and TEM pictures of lamellar-in-lamellar and lamellar-in-spheres morphologies for PS-P4VP(NDP)1.073 32 Figure 1-16. Schematic representation of the self-assembled PS-P4VP/C60 structures formed through charge-transfer complexation with the pyridines. The strong tendency of C60 molecules to aggregate combined with the possibility that each C60 molecule can bind multiple P4VP chains together through charge transfer is suggested to cause the morphological change from P4VP cylinders to C60-containing P4VP spheres63 34 Figure 1-17. SAXS intensity patterns of annealed bulk samples after evaporation of xylene: (a) pure PS-P4VP, (b) PS-P4VP/C60 (95/5 w/w) prepared from a fresh purple xylene solution, and (c) PS-P4VP/C60 (95/5 w/w) prepared from an aged 3 months old brown xylene solution63 35 Figure 1-18. (a) Long period of PS-P4VP(PDP)1.0 at various temperature. (b) A log-log plot of the long period D of a series of PS-P4VP(PDP)1.0 comb-coil supramolecules listed in (a) at 60, 110, and 150 °C as a function of the total number of monomers Ntot of the PS-P4VP diblock copolymers. (c) Long period of PS-P4VP(MSA)1.0(PDP)1.0 at various temperature. (d) A log-log plot of the long period D of a series of PS-P4VP(MSA)1.0(PDP)1.0 comb-coil supramolecules listed in (c) at 100, 130, and 150 °C as a function of the total number of monomers Ntot of the PS-b-P4VP diblock copolymers87. 38 Figure 1-19. TEM micrographs showing the block copolymer scale structures of PS-P4VP(PDP)x (a) spherical bcc morphology for x ) 0.0, (b) cylindrically hexagonal morphology for x=0.5, and (c) lamellar morphology for x =176. 40 Figure 1-20. Morphology diagram of PS-P4VP(PDP)1.0 illustrating the block copolymer level structures. L=Lamellar; C,C*=cylindrical; and S,S*=spherical morphology76.. 41 Figure 1-21. Schematic representation of the light absorption of colored solid. Achromatic colors are represented by dash lines, and chromatic colors by solid lines91.. 45 Figure 1-22. Designation of molecular obitals of different energies92. 47 Figure 1-23. Molecular Orbitals of C=O92. 50 Figure 1-24. The threshold voltage shift of devices functionalized with different chromophores (DR1, red squares; DO3, green dots; and NPAP, blue triangles) correlates with the absorption spectra (dotted curves) of these molecules 94. 51 Figure 1-25. Color change of polystyrene-b-poly (methacrylic acid) and imidazoleterminated side-chain mesogens PS-PMAA(LC) due to a shift in photonic bandgap accompanying isotropization98.. 54 Figure 1-26. Illustration of the effect of temperature on the original state I of PS-PMAA(LC). IIa: isotropization; IIb: electric field reorientation of the LC layers .. 54 Figure 1-27. (a) Schematic diagram of the structure of photonic gel film and the tuning mechanism. (b) SEM micrograph of a dry PS-b-QP2VP lamellar photonic film deposited on a silicon wafer. The left TEM inset image is the same film stained with I2 vapour. The right inset image is a reflection-mode laser-scanning confocal microscope image (xz scan) of a swollen film showing defect channels (marked by arrows) across the layers. (c) Photograph of the photonic gel film immersed in water. The photograph was taken on a black background under fluorescent lights. (d) The change of the primary stop-band position as a function of DBB crosslinker. The largest stop band is at 1,627 nm and the smallest is at 283 nm—a change of about 575%103.. 56 Figure 1-28. Schematic model for the colorimetric sensing via electron transfer process in the polymer (PSPA) nanoaggregates. 106……………..58 Figure 1-29. UV-vis absorption spectra for PNIPAM-PNVP coated gold nanoparticles in 20 mM NaCl aqueous solutions at 25 (broken line) and 50 °C (solid line). Inserts show digital photographs of PNIPAM110-b-PNVP53 coated gold nanoparticles in 20 mM NaCl aqueous solutions at 25 and 50°C.107….…………………………………..60 Figure 1-30. (Upper panel)Schematic illustration of the loading of CdTe NCs in PNI-P4VP spheres and their controlled release by pH. (Lower panel) Fluorescene images of PNI-P4VP spheres embedded with (a) 2.5nm CdTe NCs, (f) 4 nm CdTe NCs and mixture of these two NCs with varied molar ratio of small to large NCs: (b)5:4, (c)1:1, (d)1:2, and (e)1:3.108 ………...62 Figure 3-1. 400 MHz 1H NMR of P4VP-b-PCL(V5C10) 66 Figure 3-2. 400MHz 1H NMR of P4VP-b-PCL(V2C7) 67 Figure 3-3. 400MHz 1H NMR of P4VP-b-PCL(V4C7) 68 Figure 3-4. Various chromophores (1CN-IN, 2CN-IN, TCNQ, TCNE) used to form charge transfer complexes.. 69 Figure 4-1. (a) Colors of chromophores dissolved in dichlormethane and (b) Colors of chromophores associated with P4VP homopolymer dissolved in dichlormethane………………...………………………………………….76 Figure 4-2. UV-Vis spectrum of 1wt% chromophores/P4VP dissolved in CH2Cl2 (straight line) and 1wt% chromophores dissolved in CH2Cl2 (dot line…...……………………………………………………………………76 Figure 4-3. (a) FTIR spectra of P4VP thin-film samples associated with and without 1CN-IN at ratio of 1CN-IN/N=1/10 and 1/3, respectively. (b) FTIR spectra of V5C10 thin-film samples associated with and without 1CN-IN at ratio of 1CN-IN/N=1/10 and 1/3, respectively………………..77 Figure 4-4. TEM micrographs of (a) V2C7 (fP4VPv = 0.24) and its charge transfer complexes at ratio of (b) 1/7 and (c) 1/3 with RuO4 staining……79 Figure 4-5. One-dimensional SAXS profiles of (a)V2C7 (fP4VPv = 0.24) with different ratios, (b) 1CN-IN/N=1/7, (c) 1CN-IN/N=1/3…………….80 Figure 4-6. One-dimensional correlation function of 1CN-IN/V2C7 mixtures with different ratio. The thicknes of lamellar long period was calculated by the position of first peak and the average thickness of the thinner layers was determined by the connection between tangent and baseline of the first wave trough………………………………………….82 Figure 4-7. TEM micrographs of (a) V2C7 (fP4VPv = 0.24) and its charge transfer complexes with (b) 1CN-IN, (c) 2CN-IN and (d) TCNQ at the ratio of 1/7 with RuO4 staining……………………………………………….88 Figure 4-8. One-dimensional SAXS profiles of (a)V2C7 (fP4VPv = 0.24) and its mixtures with 1CN-IN, 2CN-IN ,TCNQ at the ratio of 1/7 in (b)-(d), respectively...……………………………………………………………...89 Figure 4-9. One-dimensional correlation function of chromophores/V2C7 mixtures with 1CN-IN, 2CN-IN, TCNQ at the ratio of 1/7………………89 Figure 4-10. Cyclic voltammograms of P4VP and chromphore/P4VP mixtures films coating on FTO glass and the potential range is from -1.5 to +1.5V at a scan rate of 100 mVs-1………………………………………...90 Figure 4-11. 3D correlation of GPC elution volume and in-line diode array UV-Vis spectra for 1CN-IN/P4VP mixture at the ratio of 1CN-IN/N=1/10 (THF, 0.5wt%)…………………………………………………………….90 Figure 4-12. 3D correlation of GPC elution volume and in-line diode array UV-Vis spectra for 2CN-IN/P4VP mixture at the ratio of 2CN-IN/N=1/10 (THF, 0.5wt%)…………………………………………………………….91 Figure 4-13. 3D correlation of GPC elution volume and in-line diode array UV-Vis spectra for TCNQ/P4VP mixture at the ratio of 1CN-IN/N=1/10 (THF, 0.5wt%)…………………………………………………………….91 Figure 4-14. (a)Colors of 1CN-IN associated with P4VP homopolymer (left) and P4VP-PCL (right) dissolved in dichlormethane. (b) UV-Vis spectrum of transmittance measurement with 1CN-IN/P4VP (lower one), 1CN-IN/P4VP-PCL (higher one) thin films by spin-coating at 1400rpm, 40s...………………………………………………………………………95 Figure 4-15. The color change of (a) 1CN-IN/P4VP-PCL; (b) 2CN-IN/P4VP-PCL; (c) TCNQ/P4VP-PCL thin film after annealing at 160oC for 20min and placing at room temperature for two days…………………………….………………………………………….97 Figure 4-16. (a) The color change of TCNQ/P4VP-PCL thin film (at the ratio of TCNQ/N=1/10) after annealing at 160oC for 20min and immersing half of the film into water. (b) UV-Vis spectrum of TCNQ/P4VP-PCL thin film by drop casting. The color change from green to orange after heating at 160oC, and finally return to green after immersing in the water for 20 minutes……………………………………………………………………99 Figure 4-17.(a) The color change of 1CN-IN/V2C7 thin film at the ratio of 1CN-IN/N= 1/7 from red to transparent after adding 10wt% HCl solution. (b) The color change of 1CN-IN/V2C7 thin film from transparent to red after adding 10wt% NaOH solution. (c) The mechanism of color changing from controlling pH value by adding HCL and NaOH………………….102 Figure 4-18. (a) The color change of 2CN-IN/V2C7 thin film at the ratio of 2CN-IN/N= 1/7 from blue to transparent after adding 10wt% HCl solution, and immediately turn to blue again after annealing at140oC for 20s. (b) UV-Vis spectrum of 2CN-IN/V2C7 thin film with the process of adding 10wt% HCl solution and 140oC heating…………………………………103

    1. Hamley, I. W., The Physics of Block Copolymers, Oxford University
    Press, Inc., New York, 1998.
    2. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
    3. Bates, F. S.; Fredrickson, G. H., Phys. Today 1999, 52, 32.
    4. Muthukumar, M.; Ober C.K.; Thomas E.L., Science 1999, 277,1225
    5. Fasolka, M.J.; Mayes A.M., Ann Rev Mater Res 2001,31,323
    6. Forster, S.; Plantenberg, T., Angew Chem Int Ed 2002,41,688
    7. Hamley, I.W., Angew Chem Int Ed 2003,42,1692
    8. Liu, T.; Burger, C.; Chu, B., Prog Polym Sci 2003,28,5
    9. Park, C.; Yoon, J.; Thomas, E.L., Polymer 2003, 44, 6725
    10. Abetz, V.; Simon, P.F.W., Adv Polym Sci 2005,189,125
    11. Hillmyer, M.A., Adv Polym Sci 2005, 190,137
    12. Lehn, J.M ., Polym Int 2005, 51,825
    13. Chao, C.Y.; Li, X.; Ober, C.K. , Pure Appl Chem 2004, 76,1337
    14. Pollino, J.M.; Weck, M., Chem Soc Rev 2005, 34,193
    15. Binder, W.H., Monatsh Chem 2005, 136,1
    16. Ikkala, O.; ten Brinke, G.; Science 2002,295,2407
    17. Liu, S.; Volkmer, D.; Kurth, D.G., Pure Appl Chem 2004, 76, 1847
    18. Ikkala, O.; ten Brinke, G., Chem Commun 2004, 2131
    19. ten Brinke, G.; Ikkala, O., Chem Rec 2004, 4 ,219
    20. Kato, T.; Mizoshita, N.; Kishimoto, K., Angew Chem Int Ed 2006, 45, 38
    21. Kato, T.; Mizoshita, N.; Kanie, K., Macromol Rapid Commun 2001, 22, 797
    22. Kato, T., Science 2002, 295, 2414
    23. Whitesides, G.M., Science 1991, 254, 1312
    24. Whitesides, G.M., Acc. Chem. Res.1996, 28, 37
    25. Lighart, G.B.W., Complementary Quadruple Hydrogen Bonding(2006) from internet
    26. Mary, K.C., Biochemistry, 5th edition, 2007, 51
    27. Hashimoto, T.; Tanaka, H.; Hasegawa, H., Macromolecules 1990,
    23, 4378
    28. Tanaka, H.; Hasegawa, H.; Hashimoto, T., Macromolecules 1991,
    24,240
    29. Winey, K.I.; Thomas, E.L.; Fetters, L.J., Macromolecules 1991, 24,
    6182
    30. Shull, K.R.; Mayes, A.M.; Russell, T.P.; Macromolecules 1993, 26,
    3929
    31. He, Y.; Zhu, B.; Inoue, Y.; Prog Polym Sci 2004, 29, 1021
    32. Sperling, L.H.; Klempner, D.; Utracki, L.A.; Adv Chem Ser 1994,239,3
    33. Jiang, S.; Gopfert, A.; Abetz, V., Macromolecules 2003 ,36,6171
    34. Kuo, S. W.; Wu, C. H.; Chang, F. C., Macromolecules 2004, 37, 192.
    35. Antoneitti, M.; Wenz, E.; Bronstein, L.; Seregina, M., Adv. Mater.
    1995, 7, 1000.
    36. Seregina, M. V.; Bronstein, L. M.; Platonova, O. A.; Chernyshov, D.
    M.; Valetsky P. M., Chem.Mater. 1997, 9, 923
    37. Bronstein, L.; Chernyshov, D.; Valetsky, P.; Tkachenko, N.;
    Lemmetyinen, H.; Hartmann, J.; Forster, S., Langmuir 1999, 15, 83.
    38. Mossmer, S.; Spatz, J. P.; Moller, M.; Aberle, T.; Schmidt, J.; Burchard, W., Macromolecules 2000, 33, 4791.
    39. Djalali, R.; Li, S. Y.; and Schmidt, M., Macromolecules 2002, 35, 4282.
    40. Tsutsumi, K.; Funaki, Y.; Hirokawa, Y.; Hashimoto, T. Langmuir 1999, 15, 5200.
    41. Hashimoto, T.; Harada, M.; Sakamoto, N., Macromolecules 1999, 32, 6867.
    42. Hashimoto, T.; Okumura, A.; Tanabe, D., Macromolecules 2003, 36,
    7324.
    43. Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P., Langmuir 2000, 16, 6913.
    44. Amalvy, J. I.; Percy, M. J.; Armes, S. P.; Wiese, H., Langmuir 2001,
    17, 4770.
    45. Cho, G.; Jang, J.; Jung, S.; Moon, I. S.; Lee, J. S.; Cho, Y. S.; Fung, B.
    M.; Yuan, W. L.; O’Rear, E. A., Langmuir ,2002, 18, 3430.
    46. Fournaris, K. G.; Karakassides, M. A.; Petridis, D.; Yiannakopoulou,
    K., Chem.Mater. 1999, 11, 2372.
    47. Moffitt, M.; Eisenberg, A., Chem.Mater. 1995, 7, 1178
    48. Zhao, H.; Douglas, E. P., Chem.Mater. 2002, 14, 1418
    49. Zhao, H. Y.; Douglas, E. P.; Harrison, B. S.; Schanze, K. S., Langmuir
    2001, 17, 8428.
    50. Huang, J.; Lianos, P.; Yang, Y.; Shen, J., Langmuir 1998, 14, 4342.
    51. Qi, L.; Colfen, H.; Antonietti, M., Nano Lett. 2001, 1, 61.
    52. Hao, E.; Lian, T., Langmuir 2000, 16, 7879.
    53. Boontongkong Y.; Cohen, R. E., Macromolecules 2002, 35, 3647
    54. Liu, G.; Ding, J.; Hashimoto, T.; Kimishima, K.; Winnik, F. M.; Nigam, S., Chem. Mater. 1999, 11, 2233.
    55. Boontongkong, Y.; Cohen, R. E.; Rubner, M. F., Chem.Mater. 2000, 12, 1628.
    56. Moffitt, M.; Vali, H.; Eisenberg, A., Chem.Mater. 1998, 10, 1021.
    57. Burke, S. E.; Eisenberg, A., Langmuir 2001, 17, 8341.
    58. Bendejacq, D.; Ponsinet, V.; Joanicot, M.; Loo, Y. -L.; Register, R. A., Macromolecules 2002, 35, 6645.
    59. Zhang, L.; Eisenberg, A., Macromolecules 1996, 29, 8805.
    60. Zhang, L.; Shen, H.; Eisenberg, A., Macromolecules 1997, 30, 1001.
    61. Ma, Y.; Cao, T.; Webber, S. E., Macromolecules 1998, 31, 1773.
    62. Wang, T. C.; Rubner, M. F.; Cohen, R. E., Chem.Mater. 2003, 15, 299.
    63. Ikkala, O.; Osterbacka, R.; Ruokolainen, J.; Macromolecules 2006, 39, 7648
    64. Templin, M.; Franck, A.; Chesne, A. D.; Leist, H.,; Zhang, Y.; Ulrich, R.; Schadler, V.; Wiesner, U., Science 1997, 278, 1795.
    65. Yeh, S. W.; Wei, K. H.; Sun, Y, S.; Jeng, U. S.; Liang, K. S.,
    Macromolecules 2005, 38, 6559.
    66. Kim, B, J.; Chiu, J. J.; Yi, G. R.; Pine, D. J.; Kramer, E. J., Adv. Mater. 2005, 17, 2618.
    67. Ho, R. M.; Lin, T.; Jhong, M. R.; Chung, T. M.; Ko, B. T.; Chen,Y. C.
    Macromolecules 2005, 38, 8607.
    68. Lin, T.; Ho, R. M.; Ho, J. C., Macromolecules 2009, 42, 742.
    69. Hunter, R. J., Foundation Colloid Science, New York, 1987.
    70. Wang, J. P.; Chen, W.; Roy, C.; Sievert, J. D.; Russell, T. P.,
    Macromolecules 2008, 41, 963.
    71. Wang, J. P.; Chen, W.; Russell, T. P., Macromolecules 2008, 41, 4904.
    72. Ruokolainen, J.; Ma‥kinen, R.; Torkkeli, M. ; Ma‥kela‥,T.,
    Serimaa,R.; ten Brinke, G. ; Ikkala, O, Science, 1998, 280, 557
    73. Ruokolainen, J.;ten Brinke, G. ; Ikkala, O,Adv.Mater., 1999, 11,777
    74. Knaapila, M.; Torkkeli, M.;Horsburgh, L.E.;Pa°lsson,L.-O.; Jokela,
    K.; Serimaa, R.; ten Brinke,G.; Monkman A.P.; Ikkala, O.; Appl. Phys.Lett., 2002, 81, 1489
    75. Osuji, C.; Chao, C.Y. ; Bita, I. ; Ober C.K. ; Thomas, E.L. Adv.Funct.Mater., 2002, 12, 753
    76. Ruokolainen, J.; Saariaho, M.; Ikkala, O.; ten Brinke, G.; Thomas, E.L.; Torkkeli, M.; Serimaa, R. ; Macromolecules 1999, 32,1152
    77. Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C.
    Science 2001, 292, 2469
    78. Yeh, S.-W.; Wei, K.-H.; Sun, Y.-S.; Jeng, U.-S.; Liang, K. S. Macromolecules 2005, 38, 6559.
    79. Yeh, S. W.; Chang, Y. T.; Chou, C. H.; Wei, K. H. Macromol. Rapid Commun. 2004, 25, 1680
    80. Fujita, N.; Yamashita, T.; Asai, M.; Shinkai, S. Angew. Chem., Int.
    Ed. 2005, 44, 1257
    81. Leibler, L. Macromolecules 1980, 13, 1602.
    82. Semenov, A. N. Sov. Phys. JETP 1985, 61, 733.
    83. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    84. Helfand, E. Macromolecules 1975, 8, 552.
    85. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
    86. Hadziioannou, G.; Skoulios, A. Macromolecules 1982, 15, 258.
    87. Polushkin, E. ; Alberda van Ekenstein, G.O.R. ; Knaapila, M. ; Ruokolainen, J. ; Torkkeli, M. ; Serimaa, R. ; Bras, W. ; Dolbnya, I. ; Ikkala, O.; ten Brinke, G. Macromolecules 2001, 34, 4917
    88. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645
    89. Forster, S.; Khandpur, A.K.; Zhao, J, ; Bates, F.S.; Hamley, I.W.; Ryan, A.J.; Bras, W. ; Macromolecules 1994, 27,6922
    90. Zollinger, H.; Color-A Multidisciplinary Approach, Verlag Helevetica Chimica Acta, Zurich, Wiley/VCH, Weinheim, 1999
    91. Zollinger, H.; Color Chemistry, Verlag Helevetica Chimica Acta, Zurich, Wiley/VCH, Weinheim, 2003
    92. William, R.; Virtual Textbook of Organic Chemistry, 1999
    93. Zhou, X.J.; Zifer, T.; Li, C.; Wang, B.M.; Krafcik, K.L.; Leonaed, F.; Vance, A.L., C. Nano Lett. 2009, 9, 1028
    94. Kulawadana, E.U.; STIMULI-RESPONSIVE POLYMMER, Photochemical Sciences-Bowling Green State University, 2010
    95. Kaewpirom, S.; Boonsang, S. Eur. Polym. J. 2006, 42, 1609
    96. Kim, S. J.; Kim, H. I.; Park, S. J.; Kim, I. Y.; Lee, S. H.; Lee, T. S.; Kim, S. I. Smart Mater. Struct. 2005, 14, 511.
    97. Jin, X.; Hsieh, Y. L. Polymer 2005, 46, 5149.
    98. Osuji, C.; Chao, C-Y.; Bita, I.; Ober, C.K.; Thomas, E.L. ; Adv Funct Mater 2002,12,753
    99. Weissman, J. M.; Sunkara, H. B.; Tse, A. S. ; Asher, S. A. ; Science
    1996, 274, 959
    100. Holtz, J. H.; Asher, S. A.; Nature 1997, 389, 829
    101. Lin, V. S. Y. et al.; Science 1997, 278, 840
    102. Li, Y. Y. et al.; Science 2003, 299, 2045
    103. Kang, Y.; Walish, J. J.; Gorishnyy, T.; Thomas, E.L. ; Nat. Mater. 2007, 6, 957.
    104. Li, Y.; Tanaka, T.; Annu. Rev. Mater. Sci.1992, 22, 243
    105. Tanaka, T.; Sci. Am.1981, 244, 124
    106. Antony, M.J.; Jayakannan, M.; Langmuir 2011, 27,6268
    107. Yusa, S.; Yamago, S.; Sugahara, M.; Morikawa, S.; Yamamoto, T; Morishima, Y. Macromolecules, 2007, 40, 5907
    108. Kuang, M.; Wang, D. ; Bao, H. ; Gao, M. ; Mohwald, H.; Jiang, M. Adv.Mater., 2005, 17, 267
    109. Lin, T.; Li, C. L.; Ho, R. M.; Ho, J. C., Macromolecules 2010, 43,
    3383
    110. Gross-Lannert, R.; Kaim, W.; Olbrich-Deussner, B., Inorg. Chem.
    1990, 29, 5046
    111. Acker, D.S.; Harder, R.J.; Hertler, W.R.; Mahler, W.; Melby, L.R.; Benson, R.E.; Mochel. W.E., J. Am. Chem. Soc.1960, 82, 6408
    112. Kepler, R.G.; Bierstedt, P.E.; Merrifield, R.E., Phys. Rev. Letters. 1960, 5, 503
    113. Chesnut, D.B.; Foster, H.; Phillips, W.D., J. Chem. Phys. 1961, 34, 684

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE