研究生: |
賴勇成 Lai, Yung-Cheng |
---|---|
論文名稱: |
利用拉曼光譜與電子背向繞射系統探討石墨與基板的交互作用 Raman and EBSD characterization of the graphene-substrate interaction |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 石墨烯 、基板交互作用 、拉曼 、電子背向繞射 |
外文關鍵詞: | graphene, substrate interaction, Raman, EBSD |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了提升積體電路的效能,進年來基本元件一直朝著微縮的方向前進,但是進步到幾十奈米的線寬的同時,許多製程技術也漸漸浮現問題。在這無法再繼續縮小的情況下,尋找新的材料以解決目前的困境就成了另一個解決方法,而近年來很熱門的單層石墨(graphene)就是其中最具潛力的材料。單層石墨是厚度只有一個原子層的二維系統,也是目前已知材料中唯一以二維方式穩定存在的材料,其特殊的能帶也讓科學界掀一起股研究單層石墨的熱潮。
最早的單層石墨製備方式為機械剝離法 (mechanical exfoliation),雖然此法製備出來的石墨表面很少有雜質,十分利於後續的製程步驟,但是這種方法耗時且人力須求較高,因此利用化學氣相沈積法 (Chemical vapor deposition, CVD)來製備大面積單層石墨的方法也逐漸興起,在論文中我們利用鎳薄膜 (Ni thin film)及鎳錠(Ni pillar)做為催化劑來成長單層石墨,接續著之前成長的經驗,我們已經可以成長大量高品質的單層與雙層石墨。
為了更加了解以鎳為催化劑成長的石墨特性,我們利用拉曼光譜分析來了解鎳對石墨可能造成的影響,不僅如此,為了確定石墨與基板間交互作用的情況,我們也在轉移基板後對同一點的石墨進行拉曼光譜的檢測,同時我們也利用電子背向繞射系統來分析鎳的晶向,讓我們能更深入的探討石墨的成長機製與成長時的情況。
{1} J. Bardeen and W. H. Brattain, “The transistor, a semiconductor tridoe”, Phys. Rev., {74}, 230, (1948).
{2} S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, {363}, 603, (1993).
{3} J. Hass, W. A. de Heer and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene”, J. Phys.: Condens. Matter, {20}, 323202, (2008).
{4} K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, {306}, 666-669, (2004).
{5} C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene”, Science, {312}, 1191-1196, (2006).
{6} X.Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, “Highly conducting graphene sheets and Langmuir-Blodgett films”, Nature Nanotech., {3}, 538-542, (2008).
{7} James D. Plummer, M. D. Deal and P. B. Griffin, Silicon VLSI Technology - Fundamentals, Practice and Modeling, Pearson Education International, (2000).
{8} P. W. Sutter, J.-I. Flege and E. A. Sutter, “Epitaxial graphene on ruthenium”, Nature Mater., {7}, 406-411, (2008).
{9} A. N. Obraztsov, E. A. Obraztsov, A. V. Tyurnin and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness”, Carbon, {45}, 2017-2021, (2007).
{10} A. Reina, X. Jia, J Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Lett., {9}, 30-35, (2009).
{11} A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer and J. Kong, “Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces”, Nano Res., {2}, 509-516, (2009).
{12} K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, {457}, 706-710, (2009).
{13} S. J. Chae, F. G \H{u}nes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat and Y. H. Lee, “Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation”, Adv. Mater., {21}, 1-6, (2009).
{14} X. Li, W.i Cai,. J. An, S.g Kim, J. Nah, D. Y, R. Piner, A. Velamakanni, I. Jung, E.l Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, 1171245, (2009).
{15} J. R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy, Elsevier, (2003).
{16} N. B. Colthup, L. H. Daly and S. E. Wiberley, “Introduction to Infrared and Raman Spectroscopy”, Academic Press, 1990.
{17} M. S. Dresselhaus, G. Dresselhaus, R. Saito and A. Jorio, “Raman spectroscopy of carbon nanotubes”, Phys. Rep., {409}, 47-99, (2005).
{18} S. Reich and C. Thomsen, “Raman spectroscopy of graphite”, Phil. Trans. R. Soc. Lond. A, {362}, 2271–2288, (2004).
{19} A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects”, Solid State Communications, {143}, 47-57, (2007).
{20} R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus and M. A. Pimenta, “Probing Phonon Dispersion Relations of Graphite by Double Resonance Raman Scattering”, Phys. Rev. Lett., {88}, 027401, (2002).
{21} B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the k point”, Phys. Rev. B, {74}, 075404, (2006).
{22} C. Thomsen and S. Reich, “Double Resonant Raman Scattering in Graphite”, Phys. Rev. Lett., {85}, 5214, (2000).
{23} A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Phy. Rev. Lett., {97}, 187401, (2006).
{24} S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, J. Robertson, “Kohn Anomalies and Electron-Phonon Interactions in Graphite”, Phys. Rev. Lett., {93}, 185503, (2004).
{25} Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai and C. Oshima, “Atomic structure of monolayer graphite formed on Ni (111)”, Surface Science, {374}, 61-64, (1997).
{26} G. Bertoni, L. Calmels, A. Altibelli, and V. Serin, “First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni (111) interface”, Phy. Rev. B, {71}, 075402, 2004.
{27} A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor”, Nature Nanotech., {3}, 210-215, (2008).
{28}P. Sutter,* M. S. Hybertsen, J. T. Sadowski, and E. Sutter, “Electronic Structure of Few-Layer Epitaxial Graphene on Ru(0001)” , Nano letters, {9}, No. 7, 2654-2660, (2009).
{29} Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng and Z. X. Shen, “Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening”, ACS Nano, {2}, 2301-2305, (2009).
{30} N. Ferralis, R. Maboudian and Carlo Carraro, “Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001)”, Phys. Rev. Lett., {101}, 156801, (2008).
{31} H. B. Lyon and G. A. Somorjai, “Low Energy Electron Diffraction Study of the Clean (100), (111), and (110) Faces of Platinum”, J. Chem. Phys., {46}, 2539, (1967).
{32} T. G. Kollie, “Measurement of the thermal expansion coefficient of nickel from 300 to 1000K and determination of the power law constant near the Curie temperature”, Phys. Rev. B, {16}, 4872-4881, (1977).
{33} N. Mounet and N. Marzari, “First-principles determination of the structural, vibrational and thermodynamic
properties of diamond, graphite, and derivatives”, Phys. Rev. B, {71}, 205214, (2005).
{34} 黃宏勝, 林麗娟, “FE-SEM/CL/EBSD 分析技術簡介”, 工業材料雜誌 - 檢測技術在奈米科技之應用專題, {201}, 99-108, (2003).
{35} Frank Abild-Pedersen and Jens K. Nørskov, “Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory
calculations”, Phys. Rev. B, {73}, 115419, (2006).
{36} N. Mizuochi and M. Ogura, “Hydrogen passivation effects on carbon dangling bond defects accompanying a nearby hydrogen atom in p-type CVD diamond”, Physica B, {376}, 300, (2006).
{37} D. D. L. Chung, “Review graphite”, Journal of Materials Science, {37}, 1475, (2002).
{38} S. Latil and L. Henrard, “Charge Carriers in Few-Layer Graphene Films”, Phys. Rev. Lett., {97}, 036803, (2006).
{39} B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the k point”, Phys. Rev. B, {74}, 075404, (2006).
{40} A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Phy. Rev. Lett., {97}, 187401, (2006).
{41} J. C. Meyer, A. K. Geim, M. I. Katsnelsond, K. S. Novoselovc, D. Obergfelle, S. Rothe, C. Girita and A. Zettla, “On the roughness of single- and bi-layer graphene membranes”, Solid State Communications, {143}, 101-109, (2007).
{42} P. Blakea, E. W. Hil, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Appl. Phys. Lett., {91}, 063124, (2007).
{43} W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, “Epitaxial graphene”, Solid State Communications, {143}, 92-100, (2007).
{44} G. Eda, G. Fanchini and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material”, Nature Nanotech., {3}, 270-274, (2008).
{45} J. Yan1, Y. Zhang1, P. Kim1, and A. Pinczuk, “Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene ”, Phys. Rev. Lett., {98}, 166802, (2007)
{46} G. Bertoni, L. Calmels, A. Altibelli, and V. Serin, “First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni (111) interface”, Phy. Rev. B, {71}, 075402, (2004).