研究生: |
洪辰融 Hung, Chen-Jung |
---|---|
論文名稱: |
原位穿透式電子顯微鏡分析星形三嵌段共聚高分子薄膜於熱退火中之自組裝行為 In-Situ TEM Analysis of the Behavior of Self-Assembly for Three-Arm-Block Copolymers Thin Film During Thermal Annealing |
指導教授: |
陳福榮
Chen, Fu-Rong |
口試委員: |
曾繁根
Tseng, Fan-Gang 何榮銘 Ho, Rong-Ming |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 臨場退火穿透式電子顯微鏡 、臨場加熱穿透式電子顯微鏡 、微型加熱晶片 、嵌段共巨高分子 、自組裝 、臨場加熱 、微機電技術 、材料分析 、高分子薄膜 |
外文關鍵詞: | In-Situ Annealing TEM, In-Situ Heating TEM, Micro Heater, Block Copolymer, Self-Assembly, In-Situ Heating, MEMS, Material Analysis, Copolymer Thin Film |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近十幾年的半導體產業蓬勃的快速發展下,製造元件的特徵尺寸越來越小的趨勢,傳統的浸潤式光學微影技術已面臨了因可見光波長而限制了傳統光學微影的解析度,極紫外光與自組裝薄膜一直被學界與業界期待能突破此技術瓶頸的下一代光學微影技術。在諸多自組裝薄膜材料中,星形三嵌段共聚高分子(PS9.3-b-PDMS10.1)3為極具潛力的材料之一,因其具備有高的蝕刻選擇性與具備10~20 奈米高解析能力之黃光微影所需光罩,可經由調節熵來驅動高分子自我調整組裝成垂直柱狀有序的結構。本實驗以自行設計之微機電加熱晶片及加熱樣品桿在穿透式電子顯微鏡進行熱退火來觀測(PS9.3-b-PDMS10.1)3垂直柱狀結構隨時間的演變過程,熱退火溫度落在300℃,並以COMSOL三維熱模擬及實際偵測加熱功率對電阻的變化曲線來校正微型加熱晶片的溫度,晶片熱模擬顯示在0.16 mm2範圍內溫差約為5℃以內,另以Image Pro Plus影像處理軟體來計算TEM影像視野下轉換成垂直柱狀結構的百分比,藉由晶片上多孔視窗輪流觀測方式可有效減少電子束對(PS9.3-b-PDMS10.1)3所造成的輻射損傷,並觀測(PS9.3-b-PDMS10.1)3反應退火初期開始成核與有序柱狀結構的成長,並且統計相變化比率與薄膜系統JMAK的機制討論。
In the recent rapid development of the semiconductor industry in the past decade, the feature sizes of manufacturing components have been getting smaller and smaller. Traditional immersion optical lithography technology has faced the limitation of the resolution due to the wavelength of visible light. Extreme ultraviolet and self-assembled thing films have seen as the candidates for the next-generation optical lithography technology. Both of them are expected by academics and the industry to break through this technological bottleneck. Among the many self-assembled film materials, three arms triblock polymer (PS9.3-b-PDMS10.1)3 is one of the most promising materials, because it has the higher etching selectivity and its 10 nm high resolution capability as a photomask, which regulating the entropy drives copolymer self-assembly into a vertical columnar ordered structure is required for the photolithography. In this TEM experiment, a self-designed micro heater and micro holes are fabricated by MEMS process, which can effectively reduce the radiation damage caused by the electron beam. A home-made sample holder with the micro heater was subjected to TEM for in situ observing the evolution of the (PS9.3-b-PDMS10.1)3 vertical columnar ordered structure over time at the annealing temperature 300°C. Utilizing three-dimensional thermal simulation by COMSOL Multiphasic and the detection of heating power on the resistance curve align the temperature of micro heater. Thermal simulation shows a temperature difference of heater surface is about 5 °C in the area of 0.16 mm2.
In the final results, we demonstrate the transformation of the vertical cylinder structures of the (PS9.3-b-PDMS10.1)3 from the snap shot of TEM images with the different time frame. The analysis of the phase transformation of the copolymer from disordered to ordered shows the mechanism of the modified JMAK in the thin film.
1. Ruska, E. The Development of the Electron Microscope and of Electron Microscopy(Nobel Lecture). Angew. Chemie Int. Ed. English 26, 595–605 (1987).
2. https://goo.gl/yHaePb.
3. Lin, B. J. The Future of Sub Half-Micrometer Optical Lithography. Microelectron. Eng. 6, 31–51 (1987).
4. Nunes, S. P. Block Copolymer Membranes for Aqueous Solution Applications. doi:10.1021/acs.macromol.5b02579
5. Gore, I. G. E. et al. United States Patent (19). (1998).
6. Kamino, T., Yaguchi, T., Tomita, M. & Saka, H. In-situ high-resolution electron microscopy study on a surface reconstruction of Au-deposited Si at very high temperatures. Philos. Mag. A 75, 105–114 (1997).
7. Asoro, M. A., Kovar, D. & Ferreira, P. J. In situ transmission electron microscopy observations of sublimation in silver nanoparticles. ACS Nano 7, 7844–7852 (2013).
8. Vijayan, S., Jinschek, J. R., Kujawa, S., Greiser, J. & Aindow, M. Focused Ion Beam Preparation of Specimens for Micro-Electro-Mechanical System-based Transmission Electron Microscopy Heating Experiments. 708–716 (2018). doi:10.1017/S1431927617000605
9. Huang, T. et al. Lab on a Chip. 340–347 (2012). doi:10.1039/c1lc20647h
10. Online, V. A. et al. Soft Matter solution studied with in situ wet-TEM †. 1, 8856–8861 (2013).
11. Liu, S. et al. Nano Energy Quasi-2D liquid cell for high density hydrogen storage. Nano Energy 31, 218–224 (2017).
12. Bates, F. S. & Fredrickson, G. H. Block Copolymer Thermodynamics: Theory and Experiment. Annu. Rev. Phys. Chem. 41, 525–557 (1990).
13. Lo, T. Y. et al. Orienting Block Copolymer Thin Films via Entropy. Macromolecules 49, 624–633 (2016).
14. Lu, K. et al. Orienting Silicon-Containing Block Copolymer Films with Perpendicular Cylinders via Entropy and Surface Plasma Treatment. 1–8 (2017). doi:10.1021/acs.macromol.7b02218
15. Kang, J. et al. Temperature control of micro heater using Pt thin film temperature sensor embedded in micro gas sensor. Micro Nano Syst. Lett. 5, 26 (2017).
16. Ahmadi, M. et al. WO3nano-ribbons: Their phase transformation from tungstite (WO3·H2O) to tungsten oxide (WO3). J. Mater. Sci. 49, 5899–5909 (2014).
17. https://goo.gl/KY9K9s.
18. Spring, J. D. & Bansil, R. A universal scaling analysis of nonisothermal kinetics in block copolymer phase transitions. ACS Macro Lett. 2, 745–748 (2013).
19. Jeon, K. et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10, 1–5 (2011).
20. JMAK Classic Graph. https://goo.gl/jiEWJv
21. Moghadam, M. M., Pang, E. L., Philippe, T. & Voorhees, P. W. Simulation of phase transformation kinetics in thin fi lms under a constant nucleation rate. Thin Solid Films 612, 437–444 (2016).
22. Pang, E. L., Vo, N. Q., Philippe, T. & Voorhees, P. W. Modeling interface-controlled phase transformation kinetics in thin films. 175304, 1–8 (2015).