簡易檢索 / 詳目顯示

研究生: 李慈安
Lee, Tzu-An
論文名稱: 整合式中子能譜確認裝置用於THOR BNCT的射束特性與中子能譜測量
Development and Test of an Integrated Device for Spectrum Confirmation at THOR-BNCT
指導教授: 許榮鈞
Sheu, Rong-Jiun
口試委員: 蔡惠予
Tsai, Hui-Yu
劉鴻鳴
Liu, Hong-Ming
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 115
中文關鍵詞: 硼中子捕獲治療中子射束品保中子活化分析射束特性研究能譜反解
外文關鍵詞: Boron neutron capture therapy, Quality assurance, Neutron actication analysis, Beam characterization, Neutron spectrum unfolding
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硼中子捕獲治療(BNCT)為一種藉由中子引發10B(n,α)7Li核反應釋放之帶電粒子殺死癌細胞的標靶治療,這種治療方法成功的關鍵在於癌細胞對於含硼藥物的高吸收與高強度的超熱中子束。清華大學水池式反應器(THOR)為台灣唯一研究用反應器,於2004年將原先的中子射源改建為適合進行BNCT的超熱中子束,並於2010年進行第一例的臨床試驗。截至2020年1月已累積26例的臨床經驗與近100例的緊急治療計畫。現今平均一週便有ㄧ例以上的治療,因此可見THOR-BNCT設施在現今世界BNCT領域發展的重要性。
    中子射束品質對於BNCT的穩定性相當重要,因此THOR-BNCT建立了例行的中子射束品保與品管(QA/QC),分為雙游離腔及雙箔片活化兩部分,於BNCT照射前一天與治療當天早上進行中子射束強度與劑量的驗證。然而現行品保程序僅能確認中子射束強度,所能提供的能譜資訊相當有限,無法得到整體能量範圍的中子能譜資訊。
    中子能譜量測傳統上使用金屬箔片做為活化偵檢器,或林姮孝學姊使用之改良活化偵檢器(球型活化偵檢器),結合中子活化測量與MAXED,計算出中子能譜。然而上述兩種偵檢器ㄧ次只能照射一個偵檢器,需要相當多照射與量測時間。考慮到現今如此頻繁的治療日程,THOR-BNCT需要建立一套只須短時間的活化照射,同時能夠得到比雙箔片法更多能譜資訊之品保程序。
    本研究設計之整合式中子能譜確認裝置,利用壓克力作為緩速體,改變活化箔片的照射位置,重新定義本裝置之初始能譜與偵檢器響應函數,能夠同時活化所有箔片(約30分鐘),並將冷卻測量時間壓縮至一天之內,實驗隔天就能夠得到所有箔片量測結果及反解中子能譜,此外與傳統方法比較之下也能保有一定的準確度。本研究建議將此裝置加入THOR-BNCT的月或季的品保量測程序,強化對於中子射束能量分布資訊的掌握。


    Boron neutron capture therapy (BNCT) is a targeted radiation cancer therapy based on the nuclear reaction 10B(n,α)7Li to kill tumor cells. Selectively concentrating boron compounds in tumor cells and intensive high-quality epithermal neutron beam are the keys to the success of this therapeutic modality. The Tsing Hua Open-Pool Reactor (THOR), a 2 MW research reactor at National Tsing Hua University (NTHU) in Taiwan, has been successfully upgraded and renovated for BNCT application in 2004. The first BNCT clinical trial using the THOR is carried out in 2010. Up to 2020, a total of 26 clinical trial and 100 emergency cases. Nowadays, BNCT treatment is at least one case a week, which indicates the high frequency of the THOR-BNCT neutron beam.
    Since the quality of neutron source is crucial for the stability of BNCT therapy, measurements of dual ionization chambers and two bare activation foils which embedded in a phantom are irradiated at the beam port of THOR-BNCT are routinely performed as beam quality assurance/control procedures. This currently conducted procedure could only ensure the neutron source strength and efficiency of on line monitor system. To have more complete aspect of QA/QC, this study aims to develop a new method for neutron spectrum quality assurance procedure.
    Conventiontal methods for neutron spectrum measurement in THOR-BNCT facility are bare activation foils and spherical-type activation detectors, combing with neutron activation analysis and maximum entropy unfolding algorithm. However, both of the detectors are activated one by one, which takes a lot of time. In the other hand, considering the impact beam scahdule of THOR-BNCT. The new method for spectrum quality assurance should take as less beam/measurement time as possible.
    The new method is called integrated neutron spectrum confirming method. The response functions and initial spectrum are calculated by MCNP6 because the PMMA moderator and different places of activation foils. The activation foils are irradiated for 30 minutes in one time. Moreover, the time for cooling/measuring is less than 24 hours, which means that the spectrum quality assurance measurement can be done in one day with accuracy in certain level. Ultimately, this new device will be a part of quality assurance/control procedure and conducted quarterly or semiannualy.

    摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 viii 圖目錄 x 第一章 緒論 1 1.1 硼中子捕獲治療 1 1.2 文獻回顧 3 1.2.1 中子活化分析能譜量測 3 1.2.2 THOR-BNCT中子射束特性研究 4 1.3 研究目的與架構 5 第二章 中子活化分析 6 2.1 中子活化偵檢器 7 2.1.1 反應截面 7 2.1.2 產物核種之性質 11 2.1.3 偵檢器的物理性質與材料純度 11 2.2 裸活化箔片 12 2.3 球型活化偵檢器 15 2.4 活化測量方程式 16 第三章中子能譜反解 20 3.1 MAXED能譜反解演算 20 3.2 初始能譜 22 3.3 偵檢器響應函數 22 第四章 THOR BNCT超熱中子束射束特性與能譜量測 26 4.1 THOR 實驗設施 26 4.1.1 中子即時監測系統 27 4.1.2 高純鍺偵檢器 28 4.1.3 DSPEC與Gamma Vision 29 4.1.4 能量校正與效率校正 32 4.2 現行THOR-BNCT QA/QC執行方式 36 4.2.1 雙游離腔 36 4.2.2 雙箔片 39 4.2.3 小結 42 4.3 裸活化箔片與球型活化偵檢器之實驗量測 43 4.4 裸活化箔片與球型活化偵檢器量測結果與討論 57 4.5 裸活化箔片與球型活化偵檢器能譜反解結果 59 第五章 整合式中子能譜確認裝置 62 5.1 裝置設計 62 5.2 重新定義之響應函數 67 5.3 重新定義之初始能譜 69 5.4 整合式中子能譜確認裝置量測實驗步驟 70 5.5 整合式中子能譜確認裝置實驗結果與討論 78 5.6 整合式中子能譜確認裝置能譜反解結果與討論 79 5.7 靈敏度分析 86 5.7.1 統計誤差 86 5.7.2 能譜改變:硬能譜與軟能譜 88 5.7.1 能譜改變:超熱中子能群通量 91 第六章 經驗傳承 96 6.1 活化箔片的選擇 96 6.2 產物激發態對響應函數的影響 97 6.3 熱中子與PMMA中氫原子散射影響 99 6.4 箔片活度殘留之影響 100 6.5 近似射源對響應函數結果的影響 100 6.6 減少115IN (N,N') 115MIN偵檢器量測雜訊 103 6.7 初始能譜之定義 104 6.8 初始能譜定義範圍於反解能譜的影響 105 6.9 射源定義對模擬計算的影響 107 6.10 反解計算限制條件 108 第七章 結論與未來工作 111 參考文獻 113  

    [1] International Atomic Energy Agency, "Current Status of Neutron Capture Therapy," IAEA-TECDOC-1223, Vienna, 2001.
    [2] D. Cartelli, M. E. Capoulat, J. Bergueiro, L. Gagetti, M. S. Anzorena, M. F. d. Grosso, M. Baldo, W. Castell, J. Padulo, J. C. S. Sandín, M. Igarzabal, J. Erhardt, D. Mercuri, D. M. Minsky, A. A. Valda, M. E. Debray, H. R. Somacal, N. Canepa, N. Real, M. Gun, M. S. Herrera, H. Tacca, and A. J. Kreiner, "Present status of accelerator-based BNCT: Focus on developments in Argentina," Applied Radiation and Isotopes, vol. 106, pp. 18-21, 2015.
    [3] A. J. Kreiner, M. Baldo, J. R. Bergueiro, D. Cartelli, W. Castell, V. T. Vento, J. G. Asoia, J. P. D. Mercuri, J. C. S. Sandin, J. Erhardt, J. M. Kesque, A. A.Valda, M. E. Debray, H. R. Somacal, M. Igarzabal, D. M. Minsky, M. S. Herrera, M. E. Capoulat, S. J. Gonzalez, M. P. d. Grosso, L. Gagetti, M. S. Anzorena, M. Gun, and O. Carranza, "Accelerator-based BNCT," Applied Radiation and Isotopes, vol. 88, pp. 185-189, 2014.
    [4] J. Graham, S. Landsberger, P. J. Ferreira, J. Ihlefeld, and G. Brennecka, "Neutron flux characterization techniques for radiation effects studies," Journal of Radioanalytical and Nuclear Chemistry, vol. 291, pp. 503-507, 2012.
    [5] M. ALQahtani and A. B. Alajo, "Characterization of prompt neutron spectrum of the Missouri University of Science and Technology Reactor," Nuclear Engineering and Design, vol. 320, pp. 57-64, 2017.
    [6] S. H. Giegel, C. L. Pope, and A. E. Craft, "Determination of the neutron energy spectrum of a radial neutron beam at a TRIGA reactor," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 454, pp. 28-39, 2019.
    [7] 劉淵豪, "硼中子捕獲治療超熱中子數之中子特性研究," 博士學位, 工程與系統科學系, 國立清華大學, 2009.
    [8] 林姮孝, "球型中子活化偵檢器用於THOR BNCT 中子能譜測量的特性與應用," 碩士論文, 核子工程與科學研究所, 國立清華大學, 2015.
    [9] 黃俊愷, "中子活化分析與硼中子捕獲治療之應用," 博士論文, 核子工程與科學研究所, 國立清華大學, 2017.
    [10] 劉鴻鳴, "先進硼中子捕獲治療劑量系統研發," 中華民國科技部研究計畫報告, 台北2013.
    [11] RSICC,UNG 3.3 - Unfolding with MAXED and GRAVEL. OAK RIDGE NATIONAL LABORATORY, 2004.
    [12] M.Reginatto and P. Goldhagen, "MAXED, a computer code for the deconvolution of multisphere neutron spectrometer data using the maximum entropy method (EML--595)." 1998.
    [13] Y. H. Liu, T. T. Huang, S. H. Jiang, and H. M. Liu, "Renovation of epithermal neutron beam for BNCT at THOR," Applied Radiation and Isotopes, vol. 61(5), pp. 1039-1043, 2004.
    [14] Y. H. Liu, S. Nievaart, P. E. Tsai, H. M. Liu, R. Moss, and S. H. Jiang, "Neutron Spectra Measurement and Comparison of HFR and THOR BNCT Beams," Applied Radiation and Isotopes, vol. 67, pp. S137-S140, 2009.
    [15] EG&E ORTEC Part No.783620, Gamma Vision (A66-BW Software User's Manual), USA, 2017.
    [16] 林怡君, "利用成對游離腔測量混合輻射場中輻射劑量率," 博士學位, 生醫工程與環境科學系, 國立清華大學, 2013.
    [17] F. H. Attix, Introduction to radiological physics and radiation dosimetry. New York: Wiley, 2004.
    [18] 張志豪, "清華水池室反應器硼中子捕獲治療射束中子通率測量," 碩士論文, 工程與系統科學系, 國立清華大學, 2006.

    QR CODE