簡易檢索 / 詳目顯示

研究生: 張譯安
Chang, Yi-An
論文名稱: 小分子熱活化延遲螢光材料與鈣鈦礦量子點自組裝微米線之研究
Study of Small Molecule Thermally Activated Delayed Fluorescence Material and Perovskite Quantum Dot Self-assembled Microwire
指導教授: 林皓武
Lin, Hao-Wu
口試委員: 朱治偉
Chu, Chih-Wei
陳志平
Chen, Chih-Ping
呂明諺
Lu, Ming-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 65
中文關鍵詞: 熱活化延遲螢光材料鈣鈦礦量子點自組裝微米線
外文關鍵詞: Thermally Activated Delayed Fluorescence Material, Perovskite Quantum Dot, Self-assembled, Microwire
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主題主要分兩大部分:第一部份為熱活化延遲螢光材料的光物理特性分析以及元件製備。第二部分為鈣鈦礦量子點自組裝微米線的特性分析。
    首先,在本論文的第一章序論中,我們簡述了有機發光二極體的在顯示器上的應用以及鈣鈦礦材料在光電領域的發展。
    論文的第二章,我們將介紹有機發光二極體的發展歷史,並對其發光原理、元件製程以及量測部分進一步作介紹。
    論文的第三章,我們量測了真空蒸鍍製備的熱活化延遲螢光材料(thermally activated delay fluorescence, TADF)的薄膜光物理特性,以及之後將其製作為元件來討論其TADF特性。
    論文的第四章,我們將介紹鈣鈦礦材料的發展歷史,且針對鈣鈦礦量子點的部分加以說明。並且將介紹我們鈣鈦礦量子點的合成以及後續鈣鈦礦量子點自組裝微米線的反溶劑製程。
    論文的第五章,我們將介紹鈣鈦礦量子點自組裝的特性,再經由不同儀器的結果去分析其自組裝等特性並加以討論。
    論文的第六章,我們將針對此篇論文做一結論與其未來展望。


    The works reported in this thesis are divided into two parts. The first part is about the photophysical properties of thermally activated delay fluorescence (TADF) and the preparation of the TADF devices. The second part is about the characteristics of perovskite quantum dot self-assembled microwires.
    In the first chapter, we briefly review the current status of displays and the advantages of organic light emitting diodes (OLEDs). Then we review the progress of perovskites.
    In the second chapter, we introduce the history and working mechanism of OLEDs. Then we discuss the manufacturing methods of OLEDs and their performance measurement methodology.
    In the third chapter, we measure the photophysical properties of vacuum deposited TADF films. We use the TADF materials as emission layers to manufacture devices and further discuss the results.
    In the fourth chapter, we first review the history of perovskite and then focus on the development of the perovskite quantum dots. Furthermore, we introduce our synthesis process of perovskite quantum dots and the anti-solvent process of making perovskite quantum dots self-assembled microwires.
    In the fifth chapter, we show the characteristics of the perovskite quantum dot self-assembled system and then focus on our self-assembled microwires. The properites of these microwires are measured by using various analysis instruments.
    In the last chapter, we summarize our results and briefly discuss the related future research directions.

    摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 ix 分子式目錄 x 第1章 序論 1 1-1 前言 1 1-2 論文架構 2 第2章 有機發光二極體概論 3 2-1 發展歷史 3 2-2 發光原理 5 2-2.1 OLED元件結構及基本原理 5 2-2.2 放光機制 7 2-2.3 Fӧrster & Dexter能量轉移機制 8 2-2.4 OLED元件發光效率 9 2-3 實驗製程及量測原理 11 2-3.1 光致發光頻譜 11 2-3.2 光致發光量子產率 11 2-3.3 瞬態光致發光延遲量測 12 2-3.4 元件量測 12 第3章 小分子熱活化延遲螢光材料OLED 13 3-1 熱活化延遲螢光材料OLED 13 3-1.1 簡介 13 3-1.2 原理與機制 13 3-1.3 文獻回顧 15 3-2 真空熱蒸鍍小分子熱活化延遲材料 17 3-2.1 研究動機 17 3-2.2 薄膜光物理分析 17 3-2.3 元件製備及結果討論 24 3-3 小結 36 第4章 鈣鈦礦與鈣鈦礦量子點 37 4-1 發展歷史 37 4-2 實驗製程 38 4-2.1 鈣鈦礦量子點噴霧合成法 38 4-2.2 微米線反溶劑製程 41 第5章 鈣鈦礦量子點自組裝微米線 46 5-1 鈣鈦礦量子點自組裝特性 46 5-1.1 簡介 46 5-1.2 文獻回顧 46 5-2 鈣鈦礦量子點自組裝微米線分析與討論 47 5-3 小結 61 第6章 結果與未來展望 62 參考文獻 63

    [1] http://ykuo.ncue.edu.tw/oled/oled_intro.htm.
    [2] M. Pope, H. Kallmann, P. Magnante, The Journal of Chemical Physics 1963, 38, 2042.
    [3] C. W. Tang, S. A. VanSlyke, Applied physics letters 1987, 51, 913.
    [4] C. Tang, S. VanSlyke, C. Chen, Journal of Applied Physics 1989, 65, 3610.
    [5] J. H. Burroughes, D. D. Bradley, A. Brown, R. Marks, K. Mackay, R. H. Friend, P. Burns, A. Holmes, nature 1990, 347, 539.
    [6] M. A. Baldo, D. O'brien, Y. You, A. Shoustikov, S. Sibley, M. Thompson, S. R. Forrest, Nature 1998, 395, 151.
    [7] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
    [8] H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nature communications 2014, 5, 4016.
    [9] W. Gill, Journal of Applied Physics 1972, 43, 5033.
    [10] https://www.olympus-lifescience.com/en/microscope-resource/primer/java/jablonski/jabintro/.
    [11] https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Fundamentals/Dexter_Energy_Transfer.
    [12] K. Udagawa, H. Sasabe, C. Cai, J. Kido, Advanced Materials 2014, 26, 5062.
    [13] Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nature Reviews Materials 2018, 3, 18020.
    [14] D. Zhang, X. Song, M. Cai, H. Kaji, L. Duan, Advanced Materials 2018, 30, 1705406.
    [15] D. Zhang, L. Duan, C. Li, Y. Li, H. Li, D. Zhang, Y. Qiu, Advanced Materials 2014, 26, 5050.
    [16] C. Parker, C. Hatchard, Transactions of the Faraday Society 1961, 57, 1894.
    [17] G. Blasse, D. R. McMILLIN, Chemical Physics Letters 1980, 70, 1.
    [18] M. N. Berberan-Santos, J. M. Garcia, Journal of the American Chemical Society 1996, 118, 9391.
    [19] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Advanced Materials 2009, 21, 4802.
    [20] M. Cai, X. Song, D. Zhang, J. Qiao, L. Duan, Journal of Materials Chemistry C 2017, 5, 3372.
    [21] C. Li, L. Duan, D. Zhang, Y. Qiu, ACS applied materials & interfaces 2015, 7, 15154.
    [22] T. Huang, W. Jiang, L. Duan, Journal of Materials Chemistry C 2018, 6, 5577.
    [23] D. Zhang, L. Duan, Y. Li, H. Li, Z. Bin, D. Zhang, J. Qiao, G. Dong, L. Wang, Y. Qiu, Advanced Functional Materials 2014, 24, 3551.
    [24] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nature Photonics 2018, 12, 235.
    [25] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, Science 2017, 356, 1376.
    [26] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Zhu, Nature materials 2015, 14, 636.
    [27] S. Park, W. J. Chang, C. W. Lee, S. Park, H.-Y. Ahn, K. T. Nam, Nature Energy 2017, 2, 16185.
    [28] N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Nature Photonics 2016, 10, 699.
    [29] T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa, J. Kido, Nature Photonics 2018, 12, 681.
    [30] Q. A. Akkerman, G. Rainò, M. V. Kovalenko, L. Manna, Nature materials 2018, 17, 394.
    [31] G. C. Papavassiliou, G. Pagona, N. Karousis, G. A. Mousdis, I. Koutselas, A. Vassilakopoulou, Journal of Materials Chemistry 2012, 22, 8271.
    [32] G. C. Papavassiliou, G. Pagona, G. A. Mousdis, N. Karousis, Chemical Physics Letters 2013, 570, 80.
    [33] L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Minguez Espallargas, H. J. Bolink, R. E. Galian, J. Pérez-Prieto, Journal of the American Chemical Society 2014, 136, 850.
    [34] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano letters 2015, 15, 3692.
    [35] L. Protesescu, S. Yakunin, S. Kumar, J. Bär, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M. I. Bodnarchuk, ACS nano 2017, 11, 3119.
    [36] M. F. Aygüler, M. D. Weber, B. M. Puscher, D. D. Medina, P. Docampo, R. n. D. Costa, The Journal of Physical Chemistry C 2015, 119, 12047.
    [37] M. C. Weidman, M. Seitz, S. D. Stranks, W. A. Tisdale, ACS nano 2016, 10, 7830.
    [38] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. V. Kovalenko, Journal of the American Chemical Society 2016, 138, 14202.
    [39] Y. Chen, L. Zhang, Y. Zhang, H. Gao, H. Yan, RSC advances 2018, 8, 10489.
    [40] S. W. Dai, B. W. Hsu, C. Y. Chen, C. A. Lee, H. Y. Liu, H. F. Wang, Y. C. Huang, T. L. Wu, A. Manikandan, R. M. Ho, Advanced Materials 2018, 30, 1705532.
    [41] Y. Li, S. Guan, Y. Liu, G. Xu, B. Cai, Optics express 2018, 26, 33856.
    [42] Y. Tong, B. J. Bohn, E. Bladt, K. Wang, P. Müller‐Buschbaum, S. Bals, A. S. Urban, L. Polavarapu, J. Feldmann, Angewandte Chemie International Edition 2017, 56, 13887.
    [43] G. Rainò, M. A. Becker, M. I. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko, T. Stöferle, Nature 2018, 563, 671.
    [44] Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A. F. Nogueira, E. H. Sargent, ACS applied materials & interfaces 2015, 7, 25007.
    [45] A. Angerer, K. Streltsov, T. Astner, S. Putz, H. Sumiya, S. Onoda, J. Isoya, W. J. Munro, K. Nemoto, J. Schmiedmayer, Nature Physics 2018, 14, 1168.
    [46] Y. Nagaoka, K. Hills‐Kimball, R. Tan, R. Li, Z. Wang, O. Chen, Advanced Materials 2017, 29, 1606666.

    QR CODE