簡易檢索 / 詳目顯示

研究生: 曹鈞涵
Tsao, Chun-Han
論文名稱: 射頻磁控濺鍍氧化鋅薄膜之電學與光學性質
指導教授: 吳振名
Wu, Jenn-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 128
中文關鍵詞: p型 氧化鋅透明導電氧化物鋁-氮 共摻雜射頻磁控濺鍍
外文關鍵詞: p-type ZnO, Transparent Conducting Oxide, TCO, Al-N Codoping, Radio Frequency Magnetron Sputtering
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透明導電氧化物(Transparent Conducting Oxide, TCO),是同時具備高可見光穿透率與高導電度的一種材料。目前以n-type導電性為主。主要應用於光電元件例如:太陽能電池、平面顯示器、觸控面板等等的透明電極與壓電基板的部分。其實TCO還有更多應用的空間,例如製作成透明p-n二極體、三極體、甚至進一步組合成全透明各式電子元件。若要達成這些應用,p-type TCO在可見光穿透率與導電度上,皆必須能與n-type相銜接匹配。
    本實驗使用射頻磁控濺鍍系統(RF magnetron sputtering system),以N2O、N2兩種氣體氮源,採用鋁-氮共摻雜(co-doping of Al and N)的方式,在玻璃基板(glass substrate)上,鍍製膜厚控制在280nm以下的p-type與n-type ZnO薄膜,並比較兩種不同氮源對薄膜電學性質影響。除此之外並加入鎂離子(Mg2+),調整Mg2+成分比,鍍製p-type 與n-type MgxZn1-xO薄膜,比較不同Mg成分比(x=0~x=0.05)薄膜間在微結構、電學與光學性質上的差異。最後並嘗試製作MgxZn1-xO(x=0、x=0.025) p-n二極體(ZnO homojunction diode),藉由I-V量測結果顯示二極體結構有達成。


    文字目錄 第一章 緒論..............................................1 1-1 前言................................................ 1 1-2 研究動機.............................................5 第二章 文獻回顧......................................... 8 2-1 化合物半導體 ....................................... 8 2-1-1 化合物半導體理論介紹 ............................. 8 2-2 ZnO:Ⅱ-Ⅵ 化合物半導體............................ 10 2-2-1 ZnO 結構......................................... 11 2-2-2 n-type ZnO 與p-type ZnO ......................... 11 2-3 比較第一族(group I)與第五族(group V)元素摻雜 ...... 13 2-3-1 鍵長(Bond Length)與晶格應變(Strain Effect)的影響 13 2-3-2 填隙型位置(Interstitial Sites)摻雜的影響 ........ 14 2-3-3 antisites 的影響 ................................ 15 2-3-4 AX centers 的形成與穩定 ......................... 15 2-3-5 雜質能階 ........................................ 16 2-3-6 比較以group I 與group V 元素進行p 型半導體摻雜 .. 17 2-4 共摻雜(Codoping Method)理論 ....................... 18 2-4-1 理論計算細節 .................................... 18 2-4-2 理論說明 ........................................ 19 2-5 能隙工程(Bandgap Engineering) ..................... 23 2-6 從能隙(Bandgap)變化的角度看Mg 摻雜對電學性質的影響. 25 第三章 實驗方式........................................ 35 3-1 實驗大綱 .......................................... 35 3-2 薄膜鍍製 .......................................... 35 3-2-1 基板準備 ........................................ 36 3-2-2 靶材製作 ........................................ 36 3-2-3 鍍製薄膜 ........................................ 38 3-2-3-1 參數試驗....................................... 38 3-2-3-2 未摻雜氮之對照組試片鍍製(AZO) ................. 38 3-2-3-3 一氧化二氮(N2O)氣體氮摻雜 ..................... 39 3-2-3-4 氮氣(N2)氮摻雜 ................................ 39 3-2-3-5 鍍製時添加鋅金屬於靶材上並以氮氣(N2)摻雜 ...... 39 3-2-3-6 ZnO homojunction .............................. 39 3-3 薄膜熱處理 ........................................ 40 3-4 薄膜微結構分析 .................................... 40 3-4-1 晶體結構分析 .................................... 40 3-4-2 掃描式電子顯微鏡(SEM)觀察 ........................40 3-4-3 掃描探針顯微鏡(SPM) ............................. 41 3-5 薄膜組成特性分析 .................................. 41 3-5-1 表面化學特性分析(XPS) ............................41 3-5-2 二次離子質譜儀(SIMS) .............................41 3-6 薄膜電學性質量測 .................................. 41 3-7 薄膜光學性質量測 .................................. 42 第四章 實驗結果與討論.................................. 50 4-1 一氧化二氮(N2O)氣體氮摻雜 ......................... 50 (Ⅰ)鍍製參數試驗 ...................................... 50 (1) 工作壓力(P) ........................................50 (2) 功率(W) ........................................... 50 (3) Ar/N2O 與試片溫度(T) .............................. 50 (4) 晶體結構分析....................................... 51 (5) 掃描式電子顯微鏡(SEM)分析 ......................... 52 (Ⅱ)對照組試片(AZO 試片)鍍製- 未摻雜N ................. 54 (1) AZO 薄膜晶體結構分析 .............................. 54 (2) 掃描式電子顯微鏡(SEM)觀察 ......................... 54 (3) 掃描探針電子顯微鏡(SPM)分析 ....................... 54 (4) AZO 薄膜電學性質量測 .............................. 55 (Ⅲ) N2O 氮摻雜之試片薄膜 ............................. 55 (1)電學性質量測 ....................................... 55 (2) X 光結晶繞射分析 .................................. 57 (3) SEM 觀察 .......................................... 57 (4) 光學性質量測 ...................................... 58 4-2 以氮氣(N2)進行氮摻雜 .............................. 60 (1) 薄膜外觀........................................... 60 (2) 薄膜電學性質量測................................... 60 (3) 晶體結構分析....................................... 63 (4) 掃描式電子顯微鏡(SEM)觀察 ..........................64 (5) 薄膜光學性質量測................................... 64 4-3 鍍製時添加鋅金屬於靶材上並以N2 進行氮摻雜 ......... 67 (1) 晶體結構分析....................................... 67 (2) 掃描式電子顯微鏡(SEM)觀察 ......................... 67 (3) 薄膜電學性質量測................................... 68 (4) 薄膜外觀........................................... 69 (5) 二次離子質譜儀(SIMS)分析........................... 70 (6) 薄膜光學性質量測................................... 70 (7) 薄膜成分組成分析................................... 71 4-4 綜合比較 .......................................... 74 (1) 結晶繞射分析....................................... 74 (2) 電學性質量測....................................... 74 (3) 光學性質量測........................................75 4-5 ZnO homojunction 製作與I-V 特性量測 ............... 78 第五章 結論........................................... 120 參考文獻.............................................. 123 表目錄 表2.1 常見元素電負度................................... 27 表2.2 常見化合物半導體之離子鍵......................... 27 表2.3 Mooser and Pearson’s Law ....................... 27 表2.4 取代性摻雜後與最近距相鄰元素鍵結長度及元素摻雜能階28 表2.5 各元素座落在substitutional sites 與interstitial sites 所需能量 .................................. 28 表2.6 group I 與group V 元素產生AX centers 所需的生成.. 28 表2.7 單一摻雜前後ZnO 晶格Madelung energy 能量差 ...... 29 表2.8 共摻雜前後p-type ZnO: (Ⅲ,2N)晶格Madelung energy 能量差 .......................................... 29 表3.1 Pt 鍍製參數 ..................................... 43 表3.2 霍爾量測參數設定................................. 43 表4.1 不同工作壓力(P),其他參數維持不變下片電阻測量 ... 80 表4.2 不同功率(W),其他參數維持不變下片電阻測量 ....... 80 表4.3 (a) RT 下不同Ar/N2O,其他參數維持不變下片電阻量測 81 (b) 450oC 下不同Ar/N2O,其他參數維持不變下片電阻 量測 ........................................ 81 (c) 500oC 下不同Ar/N2O,其他參數維持不變下片電阻 量測 ........................................ 82 (d) 550oC 下不同Ar/N2O,其他參數維持不變下片電阻 量測 ........................................ 82 表4.4 MgxZn1-xO 薄膜鍍製參數 .......................... 83 表4.5 霍爾電性量測結果................................. 83 (a)為AZO 初鍍薄膜 ............................... 83 (b)為經FG 450oC 熱處理後的量測結果 .............. 83 (c)為N2O 氮摻雜後之試片的量測結果 ............... 83 表4.6 N2O 摻雜薄膜霍爾量測結果(熱處理比較) .............84 表4.7 熱處理後MgxZn1-xO 薄膜霍爾量測結果比較(以N2為氮源)85 表4.8 鍍製基板溫度不同試片霍爾電性量測結果(以N2為氮源) 86 表4.9 MgxZn1-xO 薄膜熱處理後霍爾量測結果比較 (鍍製時使用鋅金屬片) ............................ 87 表4.10 不同Al co-doping 比例(靶材比例) 與電性量測結果 . 88 表4.11 化學組成分析.................................... 88 表4.12 文獻中已報導的Eg 與Mg 成分比(y)關係 .............89 表4.13 室溫下鍍製之試片霍爾量測結果.................... 90 圖目錄 圖1.1 ZnO-based UV LED 結構示意圖 ...................... 7 圖2.1 常見的化合物半導體示意圖......................... 30 圖2.2 Wurtzite 結構示意圖 ..............................30 圖2.3 雙斷鍵機制示意圖................................. 31 (a)以group I 元素為摻雜元素 ..................... 31 (b)以group V 元素為摻雜元素 ..................... 31 圖2.4 計算時所選取的晶格結構........................... 31 (a) 針對ZnO:2N .................................. 31 (b)ZnO: (Ⅲ,2N) ................................. 31 圖2.5 (a)未經摻雜ZnO 的Density of State(DOS) .......... 32 (b)~(e)經過不同元素摻雜分別是ZnO:(Al,Ga,In and N).32 圖2.6 經摻雜的N-site-decomposed DOS ................... 33 (a)單一N 摻雜 ................................... 33 (b)~(d)Ⅲ-2N 共摻雜 ............................. 33 圖2.7 為了增進發光效率之元件設計示意圖................. 34 圖3.1 實驗結構示意圖(分成三部分) ...................... 44 圖3.2 玻璃基板清洗流程................................. 45 圖3.3 白金基板結構圖................................... 45 圖3.4 靶材製作流程..................................... 46 圖3.5 鍛燒溫度示意圖................................... 47 圖3.6 燒結溫度示意圖................................... 47 圖3.7 鋅金屬放置示意圖................................. 48 圖3.8 熱處理示意圖..................................... 48 圖3.9 delay time 與hold time 示意圖 ................... 49 圖4.1 不同基板溫度與Ar/ N2O 比例試片之X 光繞射分析結果 91 圖4.2 不同Ar/N2O 比例SEM 圖 ........................... 92 圖4.3 x=0 試片SEM 圖(cross section) ................... 93 圖4.4 未進行氮摻雜(AZO)與N2O 氮摻雜後X 光結晶繞射結果 . 93 圖4.5 AZO 初鍍薄膜SPM 圖 .............................. 94 圖4.6 AZO 與以N2O 為氮源進行氮摻雜之初鍍試片SEM 圖 .... 95 圖4.7 不同x 值試片的UV-vis 光譜比較 (N2O 氮摻雜) ...... 96 圖4.8 NO 反應過程示意圖 ............................... 97 圖4.9 N2O 於高能量下分解示意圖 ........................ 97 圖4.10 試片外觀........................................ 98 (a) 以N2 為氮源 ................................ 98 (b) 以N2O 為氮源 ............................... 98 圖4.11 熱處理後霍爾量測結果比較之示意圖(以N2 為氮源) .. 99 圖4.12 x=0 初鍍與熱處理後薄膜的X 光繞射結果(以N2為氮源)100 圖4.13 以N2 為氮源之不同x 的初鍍膜試片結晶繞射結果 ....101 圖4.14 以N2 為氮源,x=0 初鍍與熱處理後試片SEM 圖 ......102 圖4.15 以N2 為氮源不同x 之初鍍膜試片UV-vis 光譜圖 .....104 圖4.16 不同x 值試片的結晶繞射結果 (鍍製時使用鋅金屬) ..104 圖4.17 x=0 試片(鍍製時使用鋅金屬)SEM 圖(cross section).105 圖4.18 不同x 值試片SEM 圖 (鍍製時使用鋅金屬) ..........106 圖4.19 SIMS 結果分析 ..................................107 圖4.20 改變Al co-doping 比例之試片外觀 ............... 109 圖4.21 不同x 之初鍍試片UV-vis 光譜圖(鍍製時使用鋅金屬).109 圖4.22 比較不同x 試片Eg 值 (鍍製時使用鋅金屬) .........110 圖4.23 XPS 分析結果。(x=0) ........................... 111 圖4.24 XPS 分析結果。(x=0.025) ........................112 圖4.25 XPS 分析結果。(x=0.05) ........................ 113 圖4.26 Ar/N2O、Ar/N2、Ar/N2/Zn Metal 試片XRD 結果 .... 114 圖4.27 Ar/N2O、Ar/N2、Ar/N2/Zn Metal/Mg(x=0~0.05) UV-vis 光譜 ................................... 115 圖4.28 Ar/N2O、Ar/N2、Ar/N2/Zn Metal(x=0)UV-vis 光譜 ..116 圖4.29 Eg 值計算結果 ................................. 117 圖4.30 n-ZnO 薄膜的I-V 特性量測 ...................... 117 圖4.31 不同電極點之p-ZnO/n-ZnO junction I-V 量測結果 ..118 圖4.32 不同電極點之p-MgxZn1-xO/n-ZnO junction I-V 量測結果....................................... 118 圖4.33 p-ZnO/n-ZnO junction 與p-MgxZn1-xO/n-ZnO junction ...................119 圖4.34 (a)典型p-n junction 示意圖 .................... 119 (b)兩邊載子濃度不平衡時之空乏區示意圖 ......... 119

    1. Thomas, G., Materials science - Invisible circuits.
    Nature, 1997. 389(6654): p. 907-908.
    2. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita,. H.
    Yanagi, H.Hosono, P-type electrical conduction in
    transparent thin films of CuAlO2. Nature, 1997. 389
    (6654): p. 939-942.
    3. Banerjee, A.N. and K.K. Chattopadhyay, Recent
    developments in the emerging field of crystalline p-type
    transparent conducting oxide thin films. Progress in
    Crystal Growth and Characterization of Materials, 2005.
    50(1-3): p. 52-105.
    4. H. Sato, T. Minami, S. Takata, T. Yamada, Transparent
    Conducting P-type NiO Thin-Films Prepared by Magnetron
    Sputtering. 1993: Elsevier Science Sa Lausanne.
    5. Snure, M. and A. Tiwari, CuBO2: A p-type transparent
    oxide. Applied Physics Letters, 2007. 91(9): p. 3.
    6. A. Barnabe, E. Mugnier, L. Presmanes, P.Tailhades,
    Preparation of delafossite CuFeO2 thin films by rf-
    sputtering on conventional glass substrate. Materials
    Letters, 2006. 60(29-30): p. 3468-3470.
    7. C. W. Teplin, T. Kaydanova, D. L. Young, J. D. Perkins,
    D. S. Ginley, A.Ode, Readey, D. W., A simple method for
    the preparation of transparent p-type Ca-doped CuInO2
    films: Pulsed-laser deposition from air-sintered Ca-
    doped Cu2In2O5 targets. Applied Physics Letters, 2004.
    85 (17): p. 3789-3791.
    8. R. Kykyneshi, B. C. Nielsen, J. Tate, J. Li, A. W.
    Sleight, Structural and transport properties of
    CuSc1-xMgxO2+y delafossites.
    Journal of Applied Physics, 2004. 96(11): p. 6188-6194.
    9. Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S.
    Park, C. J. Youn, ZnO devices: Photodiodes and p-type
    field-effect transistors. Applied Physics Letters, 2005.
    87(15).
    10. A. Krtschil, A. Dadgar, N. Oleynik, J. Blasing, A.
    Diez, A. Krost, Local p-type conductivity in zinc oxide
    dual-doped with nitrogen and arsenic. Applied Physics
    Letters, 2005. 87 (26): p. 3.
    11. B. Yao, D. Z. Shen, Z. Z. Zhang, X. H. Wang, Z. P. Wei,
    B. H. Li, Y. M. Lv, X. W. Fan, L. X. Guan, G. Z. Xing,
    C. X. Cong, Y. P. Xie, Effects of nitrogen doping and
    illumination on lattice constants and conductivity
    behavior of zinc oxide grown by magnetron sputtering.
    Journal of Applied Physics, 2006. 99(12).
    12. L. L. Chen, Z. Z. Ye, J. G. Lu, P. K. Chu, Control and
    improvement of p-type conductivity in indium and
    nitrogen codoped ZnO thin films. Applied Physics
    Letters, 2006. 89(25).
    13. A.Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino,
    M. Sumiya, K.Ohtani, S. F. Chichibu, S. Fuke, Y.
    Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Repeated
    temperature modulation epitaxy for p-type doping and
    light-emitting diode based on ZnO. Nature Materials,
    2005. 4(1): p. 42-46.
    14. V. Kobrinsky, A. Rothschild, V. Lumelsky, Y. Komem, Y.
    Lifshitz, Tailoring the gas sensing properties of ZnO t
    thin films through oxygen nonstoichiometry. Applied
    Physics Letters, 2008. 93(11).
    15. Ma, Z.Q., W.G. Zhao, and Y. Wang. Electrical properties
    of Na/Mg co-doped ZnO thin films. 2007: Elsevier
    Science Sa.
    16. Dhananjay, S. Singh, J. Nagaraju, S. B. Krupanidhi,
    Dielectric anomaly in Li-doped zinc oxide thin films
    grown by sol-gel route. Applied Physics
    a-Materials Science & Processing, 2007. 88(2): p. 421-
    424.
    17. E. J. Yun, H. S.Park, K. H.Lee, H. G. Nam, M.Jung,
    Characterization of Al-As codoped p-type ZnO films by
    magnetron cosputtering deposition.
    Journal of Applied Physics, 2008. 103(7): p. 4.
    18. G. X. Hu, H. Gong, E. F. Chor, P. Wu, Properties of p-
    type and n-type ZnO influenced by P concentration.
    Applied Physics Letters, 2006. 89(25).
    19. Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, D. P.
    Norton,p-type behavior in phosphorus-doped (Zn,Mg)O
    device structures. Applied Physics Letters, 2004. 84
    (18): p. 3474-3476.
    20. M. Kumar, T. H. Kim, S. S. Kim, B. T. Lee,
    Growth of epitaxial p-type ZnO thin films by codoping
    of Ga and N. Applied Physics Letters, 2006. 89(11):
    p. 3.
    21. L. P. Dai, H. Deng, F. Y. Mao, J. D. Zang, The recent
    advances of research on p-type ZnO thin film. Journal
    of Materials Science-Materials in Electronics, 2008. 19
    (8-9): p. 727-734.
    22. Park, C.H., S.B. Zhang, and S.H. Wei, Origin of p-type
    doping difficulty in ZnO: The impurity perspective.
    Physical Review B, 2002. 66(7): p. 3.
    23. J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao,
    L. P. Zhu,p-type conduction in N-Al co-doped ZnO thin
    films. Applied Physics Letters, 2004. 85(15):
    p. 3134-3135.
    24. J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao,
    L. P. Zhu,
    p-type conduction in N-Al co-doped ZnO thin films.
    Applied Physics Letters, 2004. 85(15): p. 3134-3135.
    25. Kumar, M. and B.T. Lee, Improvement of electrical and
    optical properties of Ga and N co-doped p-type ZnO thin
    films with thermal treatment. Applied Surface Science,
    2008. 254(20): p. 6446-6449.
    26. L. D.Tang, Y. Zhang, X. Q. Yan, Y. S. Gu, Z. Qin, Y.
    Yang, Preparation and characteristics of transparent p-
    type ZnO film by Al and N co-doping method. Applied
    Surface Science, 2008. 254(15): p. 4508-4511.
    27. S. W. Xue, X. T. Zu, L. X. Shao, Z. L. Yuan, X. Xiang,
    H. Deng,
    Preparation of p-type ZnO :(Al, N) by a combination of
    sol-gel and ion-implantation techniques. Chinese
    Physics B, 2008. 17(6): p. 2240-2244.
    28. X. H. Wang, B. Yao,Z. P. Wei, D. Z. Shen, Z. Z. Zhang,
    Y. M. Lu, J. Y. Zhang, X. W. Fan, Formation mechanisms
    of electrical conductivity and
    optical properties of ZnO : N film produced by
    annealing treatment. Chinese Physics Letters, 2008. 25
    (8): p. 2993-2996.
    29. W. Liu, S. L. Gu, J.D. Ye, S. M. Liu, X. Zhou, R.
    Zhang, Y. Hang, and C. L. Zhang, Appl. Phys. Lett. 88,
    092101 (2006).
    30. A. Tsukazaki, T. Onuma, M. Ohtani, T. Makino, M.
    Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa,
    H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42
    (2005).
    31. Yungryel Ryu, Tae-Seok Lee, Next generation of oxide
    photonic devices: ZnO-based ultraviolet light emitting
    diodes. Applied Physics Letters, 2006. 88(24).
    32. Ryu Y.R., Lubguban J.A., Lee T.S., Excitonic
    ultraviolet lasing in ZnO-based light emitting devices.
    Applied Physics Letters, 2007. 90(13).
    33. Ryu Y.R., Lee T. S., Wide-band gap oxide alloy: BeZnO.
    Applied Physics Letters, 2006. 88(5).
    34. Wei, Z.P., Zhang Z .Z., Lu Y. M., Shen D. Z., Li B. H.,
    Wang X. H., Zhang J. Y., Zhao D. X., Fan X. W., Tang Z.
    K., Formation of p-type MgZnO by nitrogen doping.
    Applied Physics Letters, 2006. 89(10).
    35. Y. F. Li, B. Yao, Y. M. Lu, Z. P. Wei, Y. Q. Gai, C. J.
    Zheng, Z. Z. Zhang, B.H. Li, D. Z. Shen, X. W. Fan, Z.
    K. Tang, Realization of p-type conduction in undoped
    MgxZn1-xO thin films by controlling Mg content. Applied
    Physics Letters, 2007. 91(23).
    36. Dunlop, L., A. Kursumovic, and J.L. MacManus-Driscoll,
    Reproducible growth of p-type ZnO:N using a modified
    atomic layer deposition process combined with dark
    annealing. Applied Physics Letters, 2008. 93(17).
    37. Xiaonan Li, Brian Keyes, Hydrogen passivation effect in
    nitrogen-doped ZnO thin films. Applied Physics Letters,
    2005. 86(12): p. 3.
    38. Chou, S.M., M.H. Hon, and I.C. Leu, Synthesis of p-type
    Al-N codoped ZnO films using N2O as a reactive gas by
    RF magnetron sputtering. Applied Surface Science, 2008.
    255(5): p. 2958-2962.
    39. F. Zhuge, L. P. Zhu, ZnO p-n homojunctions and ohmic c
    contacts to Al-N-co-doped p-type ZnO. Applied Physics
    Letters, 2005. 87(9): p. 3.
    40. M. Dutta and D. Basak, p-ZnO/n-Si heterojunction: Sol-
    gel fabrication, photoresponse properties, and
    transport mechanism. Applied Physics Letters, 2008. 92
    (21): p. 3.
    41. X. Zhang, X.M. Li, T.L. Chen, C.Y, Zhang, W.D. Yu, p-
    type conduction in wide-gap Zn1-xMgxO films grown by
    ultrasonic spray pyrolysis. Applied Physics Letters,
    2005. 87(9).
    42. Y.M. Ye, Z.Z. Ye, L.L. Chen, B.H. Zhao L.P. Zhu,
    Fabrication of p-type ZnMgO codoped with Al and N using
    dc reactive magnetron sputtering. Applied Surface
    Science, 2006. 253(4): p. 2345-2347.
    43. Y.J. Zeng, Z.X. Jian, Z.Z. Ye, Growth of Al-N codoped p-
    type ZnMgO thin films on different substrates.
    Superlattices and Microstructures, 2008. 43(4):
    p. 278-284.
    44. Akiko Kobayashi, Otto F. S., John D. Dow, Deep energy
    levels of defects in the wurtzite semiconductors AlN,
    CdS, CdSe, ZnS, and ZnO. Physical Review B, 1983. 28
    (2): p. 946-956.
    45. T. Yamamoto, H. Katayama-Yoshida, Solution using a
    codoping method to unipolarity for the fabrication of p-
    type ZnO. Japanese Journal of Applied Physics Part 2-
    Letters, 1999. 38(2B): p. L166-L169.
    46. J. A. Vanvecht and T. K.Bergstre, Electronic Structure
    of Semiconductor Alloys. Physical Review B, 1970. 1(8):
    p. 3351-3358.
    47. □. □zg□r, .Ya. I. Alivov, C. Liu, A. Teke, M. A. R
    Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H.
    Morko□, A comprehensive review of ZnO materials and
    devices. Journal of Applied Physics, 2005. 98:
    p.041301-1~041301-103.
    48. A.Ohtomo, M. Kawasaki, Structure and optical properties
    of ZnO/Mg0.2Zn0.8O superlattices. Applied Physics
    Letters, 1999. 75(7): p. 980-982.
    49. Osamu Oda, Compound Semiconductor Bulk Materials and
    Characterizations. World Scientific Publishing Co. Pte.
    Ltd., 2007.
    50. C. Klingshirn, ZnO: Material, Physics and Applications.
    ChemPhysChem 2007, 8, p782–803
    51. J. Chen, W. Z. Shen, N. B. Chen, D. J. Qiu, H. Z. Wu,
    The study of composition non- uniformity in ternary
    MgxZn1-xO thin films. Journal of Physics: Condensed
    Matter, 2003. 15: 475.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE