研究生: |
許耀榮 Syu, Yao-Rong |
---|---|
論文名稱: |
在高光譜特徵具有空間變化下之異常值不敏感解混演算法 An Outlier-insensitive Unmixing Algorithm with Spatially Varying Hyperspectral Signatures |
指導教授: |
祁忠勇
Chi, Chong-Yung |
口試委員: |
林嘉文
Lin, Chia-Wen 林家祥 Lin, Chia-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 高光譜影像 、端元變異性 、異常值效應 、分塊連續上界最小化 、塊座標下降 、交替方向乘子法 |
外文關鍵詞: | Hyperspectral imaging, endmember variability, outlier effects, block successive upper bound minimization (BSUM), block coordinate descent (BCD) method, alternating direction method of multipliers (ADMM) |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有效的高光譜解混(hyperspectral unmixing)對於從高光譜場景的給定圖像(hyperspectral image)中識別端元(endmember,即物質之光譜特徵)及其相對豐度圖(abundance maps)是不可缺少的。近年來,在具有不可忽略的端元變異性(endmember variability)和異常值效應(outlier effects)下研究高光譜解混引起了廣泛的關注。迄今為止一些最先進的高光譜解混工作僅考慮端元變異性,或者僅考慮異常值效應,尚未有能夠同時考慮端元變異性和異常值效應的現存高光譜解混演算法。在本文中,我們提出了一種新的高光譜解混演算法,稱為VOIMU演算法,它對於同時具有不可忽略的端元變異性和異常值效應的高光譜影像能夠強健的進行解混。由Thouvenin等人提出的擾動線性混合模型(perturbed linear mixing model)所定義的一個非凸最小化問題,考慮端元變異性於此模型,以及將 p quasi-norm (0 <p <1) 應用於數據擬合上來隱式處理異常值效應,再加上兩個能使端元變異性及端元光譜特徵更符合高光譜影像特性的正規子(regularizer)。接著我們將問題重新規劃為一個多凸(multi-convex)問題,通過塊座標下降(block coordinate descent)方法求解,此方法可以被視為是分塊連續上界最小化(block successive upper bound minimization)方法的特例,經推導得出VOIMU演算法可以保證收斂至鞍點。再者,儘管異常值並沒有在上述問題之物理模型,也沒有在演算法操作中檢測,但一些潛在的有趣信息依舊能顯示出異常值像素。最後,我們利用實際數據提供了一些仿真與實驗結果,證明所提出的VOIMU演算法的有效性和實際應用性。此論文主要貢獻為祁忠勇教授及林家祥教授包含題目定義、數學推導及英文撰寫等。
Effective hyperspectral unmixing (HU) is essential to the estimation of the underlying materials’ signatures (endmember signatures) and their spatial distributions (abundance maps) from a given image (data) of a hyperspectral scene. Recently, investigating HU under the non-negligible endmember variability (EV) and outlier effects (OE) has drawn extensive attention. Some state-of-the-art works either consider EV or consider OE, but none of them considers both EV and OE simultaneously. In this thesis, we propose a novel HU algorithm, referred to as the variability/outlierinsensitive multi-convex unmixing (VOIMU) algorithm, which is robust against both EV and OE. Considering two suitable regularizers, a nonconvex minimization problem is formulated for which the perturbed linear mixing model (PLMM) proposed by Thouvenin et al., is used for modeling EV, while OE is implicitly handled by applying a p quasi-norm to the data fitting with 0 < p < 1. Then we reformulate it into a multi-convex problem which is then solved by the block coordinate descent (BCD) method, with convergence guarantee by casting it into a block successive upper bound minimization (BSUM) framework. The proposed VOIMU algorithm can yield a stationary-point solution with convergence guarantee, together with some intriguing information of potential outlier pixels though outliers are neither physically modeled
in the above problem nor detected in the algorithm operation. Finally, we provide some simulation results and experimental results using real data to demonstrate the efficacy and practical applicability of the proposed VOIMU algorithm. Note that the main contributions of this thesis are made by Prof. Chong-Yung Chi and Prof. Chia-Hsiang Lin, including problem formulation, theoretical derivations, and English writing.
[1] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002.
[2] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2, pp. 6–36, Jun. 2013.
[3] W.-K. Ma, J. M. Bioucas-Dias, J. Chanussot, and P. Gader, “Signal and image processing in hyperspectral remote sensing [from the guest editors],” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 22–23, Jan. 2014.
[4] D. Landgrebe, “Hyperspectral image data analysis,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17–28, Jan. 2002.
[5] G. Shaw and D. Manolakis, “Signal processing for hyperspectral image exploitation,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12–16, Jan. 2002.
[6] A. Plaza, P. Mart´ınez, R. P´erez, and J. Plaza, “A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650–663, Mar. 2004.
[7] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, “Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354–379, Apr. 2012.
[8] W.-K. Ma, J. M. Bioucas-Dias, T.-H. Chan, N. Gillis, P. Gader, A. J. Plaza, A. Ambikapathi, and C.-Y. Chi, “A signal processing perspective on hyperspectral unmixing,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67–81, Jan. 2014.
[9] C.-H. Lin, R. Wu, W.-K. Ma, C.-Y. Chi, and Y. Wang, “Maximum volume inscribed ellipsoid: A new simplex-structured matrix factorization framework via facet enumeration and convex optimization,” SIAM J. Imag. Sci., vol. 11, no. 2, pp. 1651–1679, Jun. 2018.
[10] C. Lin and J. M. B. Dias, “Provably and roubst blind source seperation of illconditioned hyperspectral mixtures,” in Proc.IEEE Stat. Signal Process. Workshop (SSP), Jun. 2018, pp. 333–337.
[11] ——, “New theory for unmixing ill-conditioned hyperspectral mixtures,” in Proc. IEEE 10th Sensor Array Multichannel Signal Process. Workshop (SAM), Jul. 2018, pp. 430–434.
[12] A. Zare and K. C. Ho, “Endmember variability in hyperspectral analysis: Addressing spectral variability during spectral unmixing,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 95–104, Jan. 2014.
[13] B. Zhang, L. Zhuang, L. Gao, W. Luo, Q. Ran, and Q. Du, “PSO-EM: A hyperspectral unmixing algorithm based on normal compositional model,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12, pp. 7782–7792, Dec. 2014.
[14] X. Du, A. Zare, P. Gader, and D. Dranishnikov, “Spatial and spectral unmixing using the beta compositional model,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 1994–2003, Jun. 2014.
[15] Y. Zhou, A. Rangarajan, and P. D. Gader, “A Gaussian mixture model representation of endmember variability in hyperspectral unmixing,” IEEE Trans. Image Process., vol. 27, no. 5, pp. 2242–2256, May 2018.
[16] P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “Hyperspectral unmixing with spectral variability using a perturbed linear mixing model,” IEEE Trans. Signal Process., vol. 64, no. 2, pp. 525–538, Jan. 2016.
[17] L. Drumetz, M.-A. Veganzones, S. Henrot, R. Phlypo, J. Chanussot, and C. Jutten, “Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability,” IEEE Trans. Image Process., vol. 25, no. 8, pp. 3890–3905, Aug. 2016.
[18] D. W. J. Stein, S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum, and A. D. Stocker, “Anomaly detection from hyperspectral imagery,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 58–69, Jan. 2002.
[19] B. Du and L. Zhang, “Random-selection-based anomaly detector for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1578–1589, May 2011.
[20] T.-H. Chan, A. Ambikapathi, W.-K. Ma, and C.-Y. Chi, “Robust affine set fitting and fast simplex volume max-min for hyperspectral endmember extraction,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 3982–3997, Jul. 2013.
[21] B. Somers, M. Zortea, A. Plaza, and G. P. Asner, “Automated extraction of image-based endmember bundles for improved spectral unmixing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 396–408, Apr. 2012.
[22] B. Hapke, Theory of Reflectance and Emittance Spectroscopy. 2th ed. Cambridge, U.K.: Cambridge Univ. Press, 2012.
[23] S. Matteoli, M. Diani, and G. Corsini, “A tutorial overview of anomaly detection in hyperspectral images,” IEEE Aerosp. Electron. Syst. Mag., vol. 25, no. 7, pp. 5–27, Jul. 2010.
[24] I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution,” IEEE Trans. Acoust., Speech Signal Process., vol. 38, no. 10, pp. 1760–1770, Oct. 1990.
[25] X. Fu, K. Huang, B. Yang, W. Ma, and N. D. Sidiropoulos, “Robust volume minimization-based matrix factorization for remote sensing and document clustering,” IEEE Trans. Signal Process., vol. 64, no. 23, pp. 6254–6268, Dec. 2016.
[26] S. A. Vorobyov, Y. Rong, N. D. Sidiropoulos, and A. B. Gershman, “Robust iterative fitting of multilinear models,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2678–2689, Aug. 2005.
[27] H. Ekblom, “Lp-methods for robust regression,” BIT Numer. Math., vol. 14, no. 1, pp. 22–32, 1974.
[28] P. Tseng, “Convergence of a block coordinate descent method for nondifferentiable minimization,” J. Optim. Theory Appl., vol. 109, no. 3, pp. 475–494, Jun. 2001.
[29] Y.-R. Syu, C.-H. Lin, and C.-Y. Chi, “An outlier-insensitive unmixing algorithm with spatially varying hyperspectral signatures,” IEEE Access, vol. 7, pp. 15086– 15101, Jan. 2019.
[30] C.-H. Lin, C.-Y. Chi, L. Chen, D. J. Miller, and Y. Wang, “Detection of sources in non-negative blind source separation by minimum description length criterion,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 9, pp. 4022–4037, Sep. 2018.
[31] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace identification,” IEEE Trans. Geosci. and Remote Sens., vol. 46, no. 8, pp. 2435–2445, Aug. 2008.
[32] C.-H. Lin, C.-Y. Chi, Y.-H. Wang, and T.-H. Chan, “A fast hyperplane-based minimum-volume enclosing simplex algorithm for blind hyperspectral unmixing,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 1946–1961, Apr. 2016.
[33] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J. F. Huntington, “ICE: A statistical approach to identifying endmembers in hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2085–2095, Oct. 2004.
[34] C.-H. Lin, F. Ma, C.-Y. Chi, and C.-H. Hsieh, “A convex optimization-based coupled nonnegative matrix factorization algorithm for hyperspectral and multispectral data fusion,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 3, pp. 1652–1667, Mar. 2018.
[35] C.-H. Lin, A. Ambikapathi, W.-C. Li, and C.-Y. Chi, “On the endmember identifiability of Craig’s criterion for hyperspectral unmixing: A statistical analysis for three-source case,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Vancouver, BC, Canada, May 2013, pp. 2139–2143.
[36] C.-H. Lin, W.-K. Ma, W.-C. Li, C.-Y. Chi, and A. Ambikapathi, “Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing: The no-pure-pixel case,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 10, pp. 5530–5546, Oct. 2015.
[37] C.-H. Lin and J. M. Bioucas-Dias, “Linear spectral unmixing via matrix factorization: Identifiability criteria for sparse abundances,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Valencia, Spain, Jul. 2018, pp. 6155–6158.
[38] D. C. Heinz and C.-I. Chang, “Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529–545, Mar. 2001.
[39] M. Grant, S. Boyd, and Y. Ye. (Apr. 2011). CVX: MATLAB Software for Disciplined Convex Programming, Version 1.21. [Online]. Available: http://cvxr.com/cvx/
[40] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.
[41] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component analysis: A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.
[42] R. N. Clark, G. Swayze, R. Wise, E. Livo, T. Hoefen, R. Kokaly, and S. Sutley. (2007). USGS Digital Spectral Library Splib06a: U.S. Geological Survey, Digital Data Series 231. [Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06
[43] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation spatial regularization for sparse hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484–4502, Nov. 2012.
[44] A. Halimi, P. Honeine, and J. M. Bioucas-Dias, “Hyperspectral unmixing in presence of endmember variability, nonlinearity, or mismodeling effects,” IEEE Trans. Image Process., vol. 25, no. 10, pp. 4565–4579, Oct. 2016.
[45] AVIRIS Free Standard Data Products. [Online]. Available: http://aviris.jpl. nasa.gov/html/aviris.freedata.html
[46] G. Swayze, R. N. Clark, F. Kruse, S. Sutley, and A. Gallagher, “Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada,” in Proc. Summ. 3rd Annu. JPL Airborne Geosci. Workshop, vol. 1, 1992, pp. 47–49.
[47] J. M. P. Nascimento and J. M. Bioucas-Dias, “Hyperspectral unmixing based on mixtures of Dirichlet components,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 863–878, Mar. 2012.
[48] K. B. Petersen and M. S. Pedersen (Nov. 2012). The Matrix Cookbook. [Online]. Available: http://www2.imm.dtu.dk/pubdb/views/publication-details.php?id=
3274
[49] G. J. O. Jameson, “Some inequalities for (a + b)p and (a + b)p + (a − b)p,” Math. Gazette 98 (2014), pp. 96–103.