研究生: |
王鵬竣 Wang, Peng-Chun |
---|---|
論文名稱: |
利用同步輻射光源研究氧化鐠奈米粒子經熱退火及紫外光照光後的結構變化對催化活性之影響 Studies of Structural Changes and Catalytic Activity Variation due to Thermal Annealing and UV Irradiation in Praseodymium Oxide Nanoparticles Using Synchrotron Radiation X-ray Techniques |
指導教授: |
蘇雲良
Soo, Yun-Liang |
口試委員: |
湯茂竹
Tang, Mau-Tsu 吳泰興 Wu, Tai-Sing |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 三氧化二鐠 、十一氧化六鐠 、奈米粒子 、價態變化 、紫外光還原 、催化活性 |
外文關鍵詞: | Variation change |
相關次數: | 點閱:19 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討氧化鐠內鐠原子價態改變對催化活性的影響,透過多元醇
法合成氧化鐠奈米粒子。透過氧氣退火氧化以及紫外光照光還原機制,使得氧
化鐠奈米粒子內鐠原子價態比例產生變化,以此探討鐠原子價態變化對催化活
性之關聯性。
在研究過程中,利用熱重分析(Thermogravimetric Analyze)及X光繞射(X-ray
Diffraction)來確認氧化鐠奈米粒子的晶體結構,也利用電子顯微鏡(HR-TEM)確
認奈米粒子形貌及大小;並透過鐠原子吸收邊L3-edge的X光近邊吸收精細結構
(X-ray Absorption Near Edge Structure)及延伸 X 光吸收精細結構(Extended X-ray
Absorption Fine Struction)量測與分析,進而得知氧化鐠晶體中鐠原子的位置以
及價態,從而得知樣品的詳細資訊。並且藉由過氧化氫與六甲基聯苯胺反應之
顏色變化,利用可見光光譜儀(UV-Vis)進行量測個別樣品之吸收率,用以鑑定
不同實驗參數樣品的催化力。
本論文歸納出,經鍛燒過後的氧化鐠相比與鍛燒前相比具有較高的催化活
性,而經過紫外光照光後又能得到更好的催化活性,其中以經過紫外光照射 3
小時的樣品具有最高的催化活性。
In this thesis, we investigated the impact of changes in the valence state of
praseodymium in praseodymium oxide on its catalytic activity. Praseodymium
oxide nanoparticles were synthesized using polyol method. The valence state ratio
of the praseodymium oxide nanoparticles was altered through oxygen annealing
oxidation and ultraviolet (UV) light reduction mechanisms to explore the
relationship between changes in the praseodymium valence state and catalytic
activity.
During the research process, thermogravimetric analysis (TGA) and X-ray
diffraction (XRD) were used to confirm the crystal structure of the praseodymium
oxide nanoparticles. Additionally, measurements and analyses were performed
using X-ray absorption near-edge structure (XANES) and extended X-ray
absorption fine structure (EXAFS) at the praseodymium L3-edge to determine the
position and valence state of praseodymium atoms in the praseodymium oxide
crystals, providing detailed information about the samples.
As a result, this study concludes that praseodymium oxide, after calcination,
exhibits higher catalytic activity compared to uncalcined samples. Furthermore,
samples exposed to UV light show even better catalytic activity, with the sample
irradiated for 3 hours demonstrating the highest catalytic activity.
[1] Ferro, S. (2011). Physicochemical and electrical properties of praseodymium oxides. International
Journal of Electrochemistry, 2011, 1–7.
[2] Treu, B.L., Fahrenholtz, W.G. & O’Keefe, M.J. Thermal decomposition behavior of praseodymium
oxides, hydroxides, and carbonates. Inorg Mater 47, 974–978 (2011).
[3] Junyi GU, Wugang FAN, Zhaoquan ZHANG, Qin YAO, Hongquan ZHAN. Structure and Optical
Property of Pr2O3 Powder Prepared by Reduction [J]. Journal of Inorganic Materials, 2023, 38(7):
771
[4] Lv, P., Zhang, L., Koppala, S., Chen, K., He, Y., Li, S., & Yin, S. (2020). Decomposition study of
praseodymium oxalate as a precursor for praseodymium oxide in the microwave field. ACS Omega,
5(34), 21338–21344.
[5] Branko Matović, Jelena Pantić, Marija Prekajski, Nadežda Stanković, Dušan Bučevac, Tamara
Minović, Maria Čebela,Synthesis and characterization of Pr6O11 nanopowders,Ceramics
International,Volume 39, Issue 3,2013,Pages 3151-3155,
[6] Jieru Zhang, Tai-Sing Wu, Ho Viet Thang, Kai-Yu Tseng, Xiaodong Hao, Bingshe Xu, Hsin-Yi
Tiffany Chen, Yung-Kang Peng ”Cluster Nanozymes with Optimized Reactivity and Utilization of
Active Sites for Effective Peroxidase (and Oxidase) Mimicking” small, Volume18, Issue5 February
3, 2022, 2104844
[7] Fujishiro, H., Naito, T., Takeda, D., Yoshida, N., Watanabe, T., Nitta, K., Hejtmánek, J., Knížek, K.,
& Jirák, Z. (2013). Simultaneous valence shift of Pr and Tb ions at the spin-state transition in
(Pr₁₋ᵧTbᵧ)₀.₇Ca₀.₃CoO₃. Physical Review B, 87(15), 155153.
[8] Zinatloo-Ajabshir, S., & Salavati‐Niasari, M. (2015). Novel poly(ethyleneglycol)-assisted synthesis
of praseodymium oxide nanostructures via a facile precipitation route. Ceramics International, 41,
567-575.
[9] Wu, TS., Syu, LY., Lin, CN. et al. Enhancement of catalytic activity by UV-light irradiation in
CeO2 nanocrystals. Sci Rep 9, 8018 (2019).
[10] Tai-Sing Wu, Leng-You Syu, Shih-Chang Weng, Horng-Tay Jeng, Shih-Lin Chang, Yun-Liang
43
Soo ”Defect engineering by synchrotron radiation X-rays in CeO2 nanocrystals” Journal of
Synchrotron Radiation, Volume 25, Issue 5 p. 1395-1399