簡易檢索 / 詳目顯示

研究生: 吳中凱
Wu, Chung Kai
論文名稱: 利用實驗規劃法與單因子(氮氣流量)法優化氮化釩薄膜製程
Optimization of the Deposition Processing of VN Thin Films by Design of Experiment and Single Variable (Nitrogen Flow Rate) Methods
指導教授: 黃嘉宏
Huang, Jia Hong
喻冀平
Yu, Ge Ping
口試委員: 呂福興
Lu, Fu Hsing
董曉明
Tung, Hsiao Ming
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 97
中文關鍵詞: 氮化釩薄膜田口實驗設計製程參數氮氣流量
外文關鍵詞: Vanadium nitride thin film, Taguchi design of experiment, Processing parameter, Nitrogen flow rate
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的是先利用田口氏實驗規劃法找出於非平衡磁控濺鍍系統中氮化釩薄膜製程之優化條件,並進一步由田口氏實驗規劃法優化之製程參數進行細調之單因子實驗,其中,單因子實驗亦探討了最敏感的製程參數對薄膜的結構與性質之影響。氮化釩薄膜利用非平衡磁控濺鍍系統在不同製程條件下鍍覆於矽(100)基板。在非平衡磁控濺鍍系統中,選定基板偏壓、氮氣流量、基板溫度和基座轉速為四組主要優化鍍膜製程之參數。在優化參數過程中,選用薄膜之硬度和電阻率做為優化性質之指標,並在薄膜鍍覆完成後,利用平均值分析(ANOM)和變異數分析(ANOVA)找出影響薄膜性質之最敏感製程參數及預測優化之鍍膜製程條件。經由統計分析之結果得知,影響薄膜硬度之最主要的製程參數為基板偏壓而影響薄膜電阻率之最主要的製程參數為基板偏壓和氮氣流量,並由結果顯示,在田口實驗中,電阻率相較於硬度為較好之特性指標。由田口實驗規劃法得到具有最低電阻率氮化釩薄膜的優化製程條件為: 基板偏壓為-90 V、氮氣流量為3 sccm、基板溫度為300°C和基座轉速為20 rpm。進一步將得到最小電阻率之優化製程條件,利用細調氮氣流量之一次因子實驗優化製程,所得之優化條件變為: 基板偏壓為-90 V、氮氣流量為2.5 sccm、基板溫度為300°C和基座轉速為20 rpm。依據所得到之最佳化製程條件,成功鍍覆出具有高硬度和低電阻之氮化釩薄膜於矽(100)基板上。此外,在一次因子實驗中亦探討氮氣流量對氮化釩結構與性質之影響,結果顯示薄膜的織構轉換由動力學主導,而結晶性為影響氮化釩薄膜硬度、殘餘應力和電阻率的最主要因素。


    The purpose of this study were to find the optimum conditions for the deposition of VN thin film using Taguchi DOE method, and the attained parameters were further refined by conducting single-variable experiments, where the effect of the most sensitive processing parameter on the structure and properties of VN thin films was investigated. VN thin films were deposited on Si (100) substrates by unbalanced magnetron sputtering (UBMS) with different deposition parameters. Four major processing parameters of an UBMS system, including substrate bias, nitrogen flow rate, substrate temperature and substrate rotational speed, were selected for optimizing the deposition process. Hardness and electrical resistivity of thin films were chosen as the indexes of the property optimization. After deposition, the analysis of mean (ANOM) and analysis of variance (ANOVA) were carried out to assess the sensitive parameters and predict the optimum conditions. Based on the statistical analysis, the most sensitive parameter for hardness of the deposition process was substrate bias and those for electrical resistivity were substrate bias and nitrogen flow rate. In addition, the results showed that electrical resistivity was a better property than hardness for Taguchi experiment. From the Taguchi DOE method, the optimum conditions for the minimum electrical resistivity of VN thin film are: substrate bias = -90 V, nitrogen flow rate = 3 sccm, substrate temperature = 300°C, and substrate rotational speed = 20 rpm. Further optimization of the deposition process was conducted by a single-variable experiment with refining nitrogen flow rate based on the optimum conditions from Taguchi method for the minimum electrical resistivity. The optimum conditions of VN thin film became: substrate bias = -90 V, nitrogen flow rate = 2.5 sccm, substrate temperature = 300°C, and substrate rotational speed = 20 rpm. Using the optimum deposition conditions, VN films on Si (100) substrates with high hardness and low electrical resistivity were successfully produced. Furthermore, the effect of the nitrogen flow rate on the structure and properties of VN thin films was also investigated. The results of single-variable experiment indicated that the texture transition of the VN thin films may be mainly affected by kinetics, and crystallinity plays an important role in the hardness, residual stress, and electrical resistivity of the VN thin films.

    Content 摘要 i Abstract ii Content iv List of Figures vii List of Tables x Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Deposition Method 3 2.2 Characteristics of VN 5 2.3 VN-based Nanostructures and Coatings 8 2.3.1 Hardness Enhancement of VN-based Superlattices and Multilayer Coatings 8 2.3.2 Low-friction VN-based Hard Coating for High Temperature 9 2.3.3 Toughness Enhancement in VN Thin Film 11 2.4 Effects of Processing Parameters 14 Chapter 3 Design of Experiment 16 Chapter 4 Experimental Details 19 4.1 Specimen Preparation and Deposition Process 19 4.2 Characterization of Composition and Structure 24 4.2.1 X-ray Photoelectron Spectroscopy (XPS) 24 4.2.2 X-ray Diffraction (XRD) and Grazing Incident X-ray Diffraction (GIXRD) 26 4.2.3 Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) 27 4.2.4 Atomic Force Microscopy (AFM) 27 4.3 Characterization of Properties 28 4.3.1 Hardness and Young’s Modulus 28 4.3.2 Residual Stress 28 4.3.3 Electrical Resistivity 31 4.3.4 Coloration 33 Chapter 5 Results 34 5.1 Optimization of the Deposition Process of VN Thin Films 34 5.2 Effect of Nitrogen Flow Rate on the Structure and Properties of VN Thin Films 46 5.2.1 Chemical Compositions 49 5.2.2 Crystal Structure and Texture 50 5.2.3 Microstructure 54 5.2.4 Surface Roughness 57 5.2.5 Hardness 59 5.2.6 Residual Stress 60 5.2.7 Electrical Resistivity 61 5.2.8 Coloration 62 Chapter 6 Discussion 63 6.1 Optimization of the Deposition Process of VN Thin Films 63 6.1.1 Optimum Parameters and Confirmation Experiments 63 6.2 Effect of Nitrogen Flow Rate on the Structure and Properties of VN Thin films 65 6.2.1 Compositions and Deposition Rate 65 6.2.2 Crystal Structure and Texture 66 6.2.3 Properties of VN Thin Films 67 6.3 Critical Experiment on the Confirmation of an Unknown Phase 73 Chapter 7 Conclusions 77 References 78 Appendix A Deconvoluted Results of XPS Spectra 83 Appendix B The XRD & GIXRD Patterns 89 Appendix C SEM Images 93 Appendix D AFM images 95

    References
    [1] W.D. Sproul, Very High-Rate Reactive Sputtering of TiN, ZrN and HfN, Thin Solid Films, 107 (1983) 141-147.
    [2] S. Veprek, M.J.G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings, Surf. Coat. Technol., 202 (2008) 5063-5073.
    [3] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Decorative hard coatings with improved corrosion resistance, Surf. & Coat. Technol., 112 (1999) 108-113.
    [4] X. Chu, S.A. Barnett, M.S. Wong, W.D. Sproul, Reactive magnetron sputter deposition of polycrystalline vanadium nitride films, J. Vac. Sci. Technol. A, 14 (1996) 3124-3129.
    [5] M.B. Takeyama, T. Itoi, K. Satoh, M. Sakagami, A. Nyoa, Application of thin nanocrystalline VN film as a high-performance diffusion barrier between Cu and SiO2, J. Vac. Sci. Technol., B 22 (2004) 2542-2547.
    [6] J.C. Caicedo, G. Zambrano, W. Aperador, L. Escobar-Alarcon, E. Camps,, Mechanical and electrochemical characterization of vanadium nitride (VN) thin films, Appl. Surf. Sci., 258 (2011) 312-320.
    [7] X.-P. Qu, M. Zhou, T. Chen, Q. Xie, G.-P. Ru, B.-Z. Li, Study of ultrathin vanadium nitride as diffusion barrier for copper interconnect, Microelectron. Eng., 83 (2006) 236-240.
    [8] M.B. Takeyama, M. Sato, T. Itoi, E. Aoyagi, A. Noya, Barrier properties of ultrathin VN films of low resistivity and high density for Cu interconnects, Jpn. J. Appl. Phys., 50 (2016) 02BC10.
    [9] G. Rampelberg, K. Devloo-Casier, D. Deduytsche, M. Schaekers, N. Blasco, C. Detavernier, Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers, Appl. Phys. Lett., 102 (2013) 111910.
    [10] R. Lucio-Porto, S. Bouhtiyya, J.F. Pierson, A. Morel, F. Capon, P. Boulet, T. Brousse, VN thin films as electrode materials for electrochemical capacitors, Electrochim. Acta, 141 (2014) 203-211.
    [11] B. Wang, Z. Chen, G. Lu, T. Wang, Y. Ge, Exploring electrolyte preference of vanadium nitride supercapacitor electrodes, Mater. Res. Bull., 46 (2016) 37-40.
    [12] Q. Sun and Z.-W. Fu, Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries, Electrochim. Acta, 54 (2008) 403-409.
    [13] F. Ge, P. Zhu, F. Meng, Q. Xue, F. Huang, Achieving very low wear rates in binary transition-metal nitrides: The case of magnetron sputtered dense and highly oriented VN coatings, Surf. Coat. Technol., 248 (2014) 81-90.
    [14] G. Farges, E. Beauprez, M.C. Sainte Catherine, Crystallographic structure of sputtered cubic δ-VNx films: influence of basic deposition parameters, Surf. Coat. Technol., 61 (1993) 238-244.
    [15] J.-H. Huang, Y.-P. Tsai, G.-P. Yu, Effect of processing parameters on the microstructure and mechanical properties of TiN film on stainless steel by HCD ion plating, Thin Solid Films, 355-356 (1999) 440-445.
    [16] C.-H. Ma, J.-H. Huang, Haydn Chen, A study of preferred orientation of vanadium nitride and zirconium nitride coatings on silicon prepared by ion beam assisted deposition, Surf. Coat. Technol., 133-134 (2000) 289-294.
    [17] H. Gueddaoui, G. Schmerber, M. Abes, M. Guemmaz, J.C. Parlebas, Effects of experimental parameters on the physical properties of non-stoichiometric sputtered vanadium nitrides films, Catalysis Today, 113 (2006) 270-274.
    [18] W.-J. Chou, C.-H. Sun, G.-P. Yu, J.-H. Huang, Optimization of the deposition process of ZrN and TiN thin films on Si(1 0 0) using design of experiment method, Mater. Chem. Phys., 82 (2003) 228-236.
    [19] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol., 191(2005) 17-24.
    [20] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si(100), Thin Solid Films, 405 (2002) 162-169
    [21] J.-H. Huang, C.-H. Ho, and G.-P. Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates, Mater. Chem. Phys., 102 (2007) 31-38.
    [22] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum., 56 (2000) 159-172.
    [23] JCPDS file 65-0437
    [24] Hugh O. Pierson, Handbook of Refractory Carbides and Nitrides, 1st edition, Noyes Publications, 1996.
    [25] Y. Qiu, S. Zhang, B. Li, J-W Lee, D. Zhao, Influence of Nitrogen Partial Pressure and Substrate Bias on the Mechanical Properties of VN Coatings, Procedia Eng., 36 (2012) 217-225.
    [26] A.B. Mei, R.B. Wilson, D. Li, David G. Cahill, A. Rockett, J. Birch, L. Hultman, J.E. Greene, I. Petrov, Elastic constants, Poisson ratios, and the elastic anisotropy of VN(001), (011), and (111) epitaxial layers grown by reactive magnetron sputter deposition, J.Appl. Phys., 115 (2014) 214908.
    [27] H. Okamoto, N-V (Nitrogen-Vanadium), J. Phase Equilib., 22 (2001) 362-362.
    [28] S.A. Barneet, M. Shinn, Plastic and elastic properties of compositionally modulated thin films, Annu. Rev. Mater. Sci., 24 (1994) 481-511.
    [29] J.S. Koehler, Attempt to Design a Strong Solid, Phys. Rev. B, 2 (1970) 547-551.
    [30] P.M. Anderson, Hall-Petch relations for multilayered materials, Nanostructured Mater., 5 (1995) 349-362.
    [31] R.C. Cammarata, T.E. Schlesinger, Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films, Appl. Phys. Lett., 56 (1990) 1862-1864.
    [32] P.B. Mirkarmi, S.A. Barneet, K.M. Hubbard, T.R. Jervis, L. Hultman, Structure and mechanical properties of epitaxial TiN/V0.3Nb0.7N(100) superlattices, J. Mater. Res., 9 (1994) 1456-1467.
    [33] K. Yoshii, H. Takagi, M. Umeno, H. Kawabe, Tensile strength of Ni/Cu/(001)Ni triple layer films, Metall. Trans. A, 15 (1984) 1273-1280.
    [34] H. Holleck, Material selection for hard coatings, J. Vac. Sci. Technol. A, 4 (1986) 2661-2669.
    [35] U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Maekert, J.E. Greene, Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness, J. Appl. Phys., 62 (1987) 481-484.
    [36] G. Li, J. Lao, J. Tian, Z. Han, M. Gu, Coherent growth and mechanical properties of AlN/VN multilayers, J. Appl. Phys., 95 (2004) 92-96.
    [37] X. Chu, M.S. Wong, W.D. Sproul, S.A. Barnett, Deposition, structure, and hardness of polycrystalline transition-metal nitride superlattice films, J. Mater. Res., 14 (1999) 2500-2507.
    [38] K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer, Influence of oxide phase formation on the tribological behaviour of Ti–Al–V–N coatings, Surf. Coat. Technol., 200 (2005) 1731-1737.
    [39] R. Franz, J. Neidhardt, B. Sartory, R. Kaindl, R. Tessadri, P. Polcik, V.H. Derflinger, C. Mitterer, High-temperature low-friction properties of vanadium-alloyed AlCrN coatings, Tribol. Lett., 23 (2006) 101-107.
    [40] A. Magnéli, Structures of the ReO3-type with Recurrent Dislocations of Atoms Homologous Series of Molybdnum and Tungsten Oxides, Acta Crystallogr., 6 (1953) 495-500.
    [41] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, A new low friction concept for high temperatures: lubricious oxide formation on sputtered VN coatings, Tribol. Lett., (2004) 751-755.
    [42] D.G. Sangiovanni, L. Hultman, V. Chirita, Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration, Acta Mater., 59 (2011) 2121-2134.
    [43] H. Kindlund, D.G. Sangiovanni, L. Martínez-de-Olcoz, J. Lu, J. Jensen, J. Birch, I. Petrov, J.E. Greene, V. Chirita, L. Hultman, Toughness enhancement in hard ceramic thin films by alloy design, APL Mater., 1 (2013) 042104.
    [44] M.S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, Englewood Cliffs, New Jersey 1989.
    [45] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B, 5 (1972) 4709-4714.
    [46] M.Y. Liao, Y. Gotoh, H. Tsuji, J. Ishikawa, Crystallographic structure and composition of vanadium nitride films deposited by direct sputtering of a compound target, J. Vac. Sci. Technol. A, 22 (2004) 146-150.
    [47] R.T. Haasch, T.-Y. Lee, D. Gall, J.E. Greene, I. Petrov, Epitaxial VN (001) Grown and Analyzed In situ by XPS and UPS. I. Analysis of As-deposited Layers, Surf. Sci. Spectra, 7 (2000) 221-232.
    [48] A.M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn, G.Q. Lu, Y. Chen, Structure and Capacitive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V2O5†, Chem. Mater., 22 (2010) 914-921.
    [49] Z. Zhao, Y Liu, H Cao, J Ye, S Gao, M Tu, Synthesis of VN nanopowders by thermal nitridation of the precursor and their characterization, J. Alloys Compd., 464 (2008) 75-80.
    [50] J.-G. Choi, The surface properties of vanadium compounds by X-ray photoelectron spectroscopy, Appl. Surf. Sci. 148 (1999) 64-72.
    [51] P. Scherrer, Bestimmung der Grösse und der innern Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2 (1918) 98-100.
    [52] JCPDS file 22-1058
    [53] JCPDS file 33-1439
    [54] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, 1958.
    [55] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
    [56] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A Mat., 82 (1909) 172-175.
    [57] W. Nix, Mechanical properties of thin films, Metall. Trans. A, 20 (1989) 2217-2245.
    [58] S.M. Sze, VLSI technology, McGraw-Hill, 1983.
    [59] CIE, Colorimetry, Tech. Rept., 15, Bureau Central de la CIE, Paris, 1971.
    [60] CIE, Recommendations on uniform color spaces, color difference equation and psychometric terms, Supplement No.2 to CIE publication No.15, Tech. Rept., Bureau Central dela CIE, Paris, 1978.
    [61] ASTM, Symposium on Color, American Society for Testing Materials, Philadelphia, 1941.
    [62] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films 518 (2010) 7308-7311.
    [63] D. Gall, S. Kodambaka, M. Wall, I. Petrov, J.E. Greene, Pathways of atomistic processes on TiN (001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys., 93 (2003) 9086-9094.
    [64] L. Hultman, M. Shinn, P. Mirkarimi, S. Barnett, Characterization of misfit dislocations in epitaxial (001)-oriented TiN, NbN, VN, and (Ti,Nb)N film heterostructures by transmission electron microscopy, J. Cryst. Growth, 135 (1994) 309-317.
    [65] H. Ljungcrantz, M. Odén, L. Hultman, J. E. Greene, J. E. Sundgren, Nanoindentation studies of single‐crystal (001)‐, (011)‐, and (111)‐oriented TiN layers on MgO, J. Appl. Phys., 80 (1996) 6725-6733.
    [66] C.-H. Ma, J.-H. Huang, H. Chen, Nanohardness of nanocrystalline TiN thin films, Surf. Coat. Technol., 200 (2006) 3868-3875.
    [67] J.D. Eshelby, F.C. Frank, F.R.N. Nabarro, The equilibrium of linear arrays of dislocations, Philos. Mag., 42 (1951) 351-364.
    [68] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-Hill New York, 1986.
    [69] W.-J. Chou, G.-P. Yu, J.-H. Huang, Effect of heat treatment on the structure and properties of ion-plated TiN films, Surf. Coat. Technol., 168 (2003) 43-50.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE