研究生: |
胡竣智 Hu, Chun-Chih |
---|---|
論文名稱: |
常用之二氧化鈦及金奈米粒子對秀麗隱桿線蟲的毒性評估 Toxicity assessments of commonly used TiO2 and Au nanoparticles on Caenorhabditis elegans |
指導教授: |
嚴大任
Yen, Ta-Jen |
口試委員: |
陳三元
Chen, San-Yuan 宋信文 Sung, Hsing-Wen 廖秀娟 Liao, Hsiu-Chuan 王歐力 Wagner, Oliver |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 94 |
中文關鍵詞: | 二氧化鈦奈米粒子 、金奈米粒子 、11-巯基十一烷酸 、銳鈦礦 、金紅石 、DNA微陣列晶片 、秀麗隱桿線蟲神經細胞 |
外文關鍵詞: | Titanium dioxide nanoparticles (TiO2 NPs), gold nanoparticles (Au NPs), 11-mercaptoundecanoic acid (MUA), anatase, rutile, DNA microarray chip, primary C. elegans neurons |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工程用奈米粒子如奈米二氧化鈦及奈米金已廣泛被運用在化妝品、塗料、太陽電池、生物感測器以及生物顯影等。因此,奈米粒子毒性評估日趨重要。
本研究我們利用模式生物秀麗隱桿線蟲來探討銳鈦礦及金紅石相二氧化鈦奈米粒子的毒性。實驗結果顯示秀麗隱桿線蟲可以攝入FITC修飾過的二氧化鈦奈米粒子,並藉由穿透式電子顯微鏡發現銳鈦礦及金紅石相二氧化鈦奈米粒子存在神經細胞體之細胞質中。
根據實驗數據指出,二氧化鈦奈米粒子會造成神經之軸突明顯變短,因此我們推測,二氧化鈦奈米粒子所造成之軸突變短進而造成蟲體運動行為的遲緩。此外,銳鈦礦相二氧化鈦奈米粒子並不會影響蟲體長度;然而實驗數據指出,蟲體的個體數在500 µg/ml濃度下的銳鈦礦相二氧化鈦奈米粒子反應72小時之後減少了50%。特別是金紅石相二氧化鈦奈米粒子對蟲體的長度跟個體數造成了負面的影響。由於蟲體無法進入L4階段導致蟲體數3天內降低為原來的一半。為了得到二氧化鈦奈米粒子中毒的細胞機制,我們使用DNA微陣列法來量測在二氧化鈦內米粒子暴露下基因表現量的改變。我們的數據顯示三個基因參與了金屬鍵結或金屬解毒(mtl-2, C45B2.2 及 nhr-247),六個基因參與了繁殖力及生殖(mtl-2, F26F2.3, ZK970.7, clec-70, K08C9.7 及 C38C3.7),四個基因參與了生長及形態發生(mtl-2, F26F2.3, C38C3.7及 nhr-247),五個基因參與了神經的功能(C41G6.13, C45B2.2, srr-6, K08C9.7 及 C38C3.7)。
此外,我們利用尺寸可控制性的奈米金粒子來研究模式生物秀麗隱桿線蟲的基因毒理反應。我們證實了秀麗隱桿線蟲分別可以攝入有MUA修飾及沒有MUA修飾的奈米金粒子,而且可以由X光顯微技術偵測到蟲體腸道中含有這些金顆粒。在金粒子的暴露下秀麗隱桿線蟲的神經軸突變短了,這可能是導致蟲體運動行為遲緩的原因。此外,我們也測定出MUA對金粒子比例為0.5, 1 及 3的金粒子在72小時之後使蟲體數減少超過50%。再者,這些不同成分比例的金粒子也分別使體長、蠕動頻率以及後代數目降低。我們也利用了MTT法分析了暴露在金粒子下秀麗隱桿線蟲神經細胞的存活率。MUA對金粒子比例的增加降低了神經的存活率。為了進一步了解發育的變化以及基因表現量變化之間的關聯性,我們利用DNA微陣列法來量測基因表現量的變化(例如: clec-174參與了細胞的防護,cut-3 及 fil-1參與了形態發生,dpy-14表現在胚胎神經上,mtl-1參與了金屬解毒及體內平衡)。
Engineered nanoparticles such as TiO2 nanoparticles and gold nanoparticles are widely used in cosmetic, pigments, solar cells, biosensors, and bioimaging. Therefore, it is of critical importance to evaluate the toxicity of these nanoparticles.
In this study, we employed the model organism Caenorhabditis elegans to investigate the toxicology of anatase and rutile phase titanium dioxide (TiO2) nanoparticles (NPs). The results show that the nematode C. elegans can take up fluorescein isothiocyanate (FITC)-labeled TiO2 NPs and that both anatase and rutile TiO2 NPs can be detected in the cytoplasm of cultured primary C. elegans neurons by transmission electron microscopy (TEM). After TiO2 NPs exposure, these neurons grew significantly shorter axons, which may be related to the detected impeded worm locomotion behavior. Furthermore, anatase TiO2 NPs did not affect the worm’s body length; however, we determined that a concentration of 500 µg/ml anatase TiO2 NPs reduced a worm population by 50% within 72 hours. Notably, rutile TiO2 NPs negatively affect both body length and worm population. Our observations suggest that worms unable to enter L4 larval stages lead to a severe reduction in the worm population at TiO2 NPs of LC50/3d. In order to understand details of cellular mechanisms involved in TiO2 NPs intoxication, DNA microarray assays were employed to determine changes in gene expression in the presence or absence of TiO2 NPs exposure. Our data reveal TiO2 NPs exposure causes gene expression (RNA level) significant different from untreated worms displaying 3 metal binding/metal detoxification genes (mtl-2, C45B2.2 and nhr-247), 6 fertility/reproduction related genes (mtl-2, F26F2.3, ZK970.7, clec-70, K08C9.7 and C38C3.7), 4 worm growth/body morphogenesis associated genes (mtl-2, F26F2.3, C38C3.7 and nhr-247) and 5 genes with neuronal functions (C41G6.13, C45B2.2, srr-6, K08C9.7 and C38C3.7).
We also utilized size-tunable gold nanoparticles (Au NPs) to investigate the toxicogenomic responses of C. elegans. Here, we show that C. elegans can uptake Au NPs coated with or without 11-mercaptoundecanoic acid (MUA), and Au NPs are detectable in worm intestines using X-ray microscopy. After Au NP exposure, C. elegans neurons grew shorter axons, which may be related to the observed impeded worm locomotion. Furthermore, we determined that MUA to Au ratios of 0.5, 1 and 3 reduced the worm population by more than 50% within 72 hours. In addition, these MUA to Au ratios reduced the worm body size, thrashing frequencies (worm mobility) and brood size. MTT assays were then employed to analyze the viability of cultured C. elegans primary neurons exposed to MUA-Au NPs. Increasing the MUA to Au ratios increasingly reduced neuronal survival. To understand how developmental changes (after MUA-Au NP treatment) are related to changes in gene expression, we employed DNA microarray assays and identified changes in gene expression (e.g., clec-174, involved in cellular defense, cut-3 and fil-1, both involved in body morphogenesis, dpy-14, expressed in embryonic neurons, and mtl-1, functions in metal detoxification and homeostasis).
1. Kim, S. and D.Y. Ryu, Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol, 2013. 33(2): p. 78-89.
2. Fede, C., et al., Evaluation of gold nanoparticles toxicity towards human endothelial cells under static and flow conditions. Microvasc Res, 2015. 97: p. 147-55.
3. Haseloh, S., et al., Towards flexible inorganic "mesomaterials": one-pot low temperature synthesis of mesostructured nanocrystalline titania. Chem Commun (Camb), 2004(13): p. 1460-1.
4. Lee, S., et al., Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell. Langmuir, 2007. 23(23): p. 11907-10.
5. Vinh, D.C. and J.M. Embil, Infection in breast implants. Lancet Infect Dis, 2005. 5(8): p. 462-3; author reply 463.
6. Dougherty, S.H., Pathobiology of infection in prosthetic devices. Rev Infect Dis, 1988. 10(6): p. 1102-17.
7. Chu, V.H., et al., Staphylococcus aureus bacteremia in patients with prosthetic devices: costs and outcomes. Am J Med, 2005. 118(12): p. 1416.
8. Gordon, S.M., et al., Nosocomial bloodstream infections in patients with implantable left ventricular assist devices. Ann Thorac Surg, 2001. 72(3): p. 725-30.
9. Di Filippo, A. and A.R. De Gaudio, Device-related infections in critically ill patients. Part II: Prevention of ventilator-associated pneumonia and urinary tract infections. J Chemother, 2003. 15(6): p. 536-42.
10. Givens, C.D. and R.P. Wenzel, Catheter-associated urinary tract infections in surgical patients: a controlled study on the excess morbidity and costs. J Urol, 1980. 124(5): p. 646-8.
11. Chen, L.Y., et al., Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem, 2015. 87(1): p. 216-29.
12. Shang, L., et al., Two accurate sequence, structure, and phylogenetic template-based RNA alignment systems. BMC Syst Biol, 2013. 7 Suppl 4: p. S13.
13. Chen, T.H. and W.L. Tseng, (Lysozyme type VI)-stabilized Au8 clusters: synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small, 2012. 8(12): p. 1912-9.
14. Liu, J., et al., One-pot synthesis of gold nanoclusters with bright red fluorescence and good biorecognition abilities for visualization fluorescence enhancement detection of E. coli. Talanta, 2015. 134: p. 54-9.
15. Guix, M., et al., Nanoparticles for Cosmetics. How Safe is Safe? Contributions to Science, 2008. 4: p. 213–217.
16. Zhang, X.D., et al., Ultrasmall Au(10-12)(SG)(10-12) Nanomolecules for High Tumor Specificity and Cancer Radiotherapy. Adv. Mater., 2014. 26(26): p. 4565-8.
17. Chen, H., et al., Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy. Biomaterials, 2012. 33(33): p. 8461-76.
18. Wang, Y., J. Chen, and J. Irudayaraj, Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano, 2011. 5(12): p. 9718-25.
19. Yang, H., et al., Effects of Nanoparticle Size and Gestational Age on Maternal Biodistribution and Toxicity of Gold Nanoparticles in Pregnant Mice. Toxicol. Lett., 2014. 230(1): p. 10-8.
20. Lai, S.F., et al., Very Small Photoluminescent Gold Nanoparticles for Multimodality Biomedical Imaging. Biotechnol. Adv., 2013. 31(3): p. 362-8.
21. Lai, S.F., et al., One-pot Tuning of Au Nucleation and Growth: From Nanoclusters to Nanoparticles. Langmuir, 2011. 27(13): p. 8424-9.
22. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
23. Consortium, C.e.S., Genome sequence of the nematode C. elegans: a platform for investigating biology. Science, 1998. 282(5396): p. 2012-8.
24. Li, J. and W. Le, Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol, 2013. 250: p. 94-103.
25. Therrien, M. and J.A. Parker, Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans. Front Genet, 2014. 5: p. 85.
26. Chege, P.M. and G. McColl, Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson's disease. Front Aging Neurosci, 2014. 6: p. 89.
27. Hirokawa, N., S. Niwa, and Y. Tanaka, Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 2010. 68(4): p. 610-38.
28. Zhang, W., et al., Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater, 2012. 24(39): p. 5391-7.
29. Yang, X., et al., Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol, 2012. 46(2): p. 1119-27.
30. Zanni, E., et al., Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model. Nano Lett, 2012. 12(6): p. 2740-4.
31. Mohan, N., et al., In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett, 2010. 10(9): p. 3692-9.
32. Choi, J.Y., et al., Photocatalytic antibacterial effect of TiO(2) film formed on Ti and TiAg exposed to Lactobacillus acidophilus. J Biomed Mater Res B Appl Biomater, 2007. 80(2): p. 353-9.
33. Park, J., et al., TiO2 nanotube surfaces: 15 nm--an optimal length scale of surface topography for cell adhesion and differentiation. Small, 2009. 5(6): p. 666-71.
34. Carballo-Vila, M., et al., Titanium oxide as substrate for neural cell growth. J Biomed Mater Res A, 2009. 90(1): p. 94-105.
35. Yu, W.Q., et al., The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res A, 2010. 94(4): p. 1012-22.
36. Das, K., S. Bose, and A. Bandyopadhyay, TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. J Biomed Mater Res A, 2009. 90(1): p. 225-37.
37. Zhu, L., et al., Biomimetic coating of compound titania and hydroxyapatite on titanium. J Biomed Mater Res A, 2007. 83(4): p. 1165-75.
38. Wu, Q., et al., Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system. J Hazard Mater, 2012. 243: p. 161-8.
39. Wu, Q., et al., Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomedicine, 2014. 10(6): p. 1263-71.
40. Angelstorf, J.S., et al., Impact of particle size and light exposure on the effects of TiO2 nanoparticles on Caenorhabditis elegans. Environ Toxicol Chem, 2014. 33(10): p. 2288-96.
41. Wang, H., R.L. Wick, and B. Xing, Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut, 2009. 157(4): p. 1171-7.
42. Zhao, Y., et al., The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition. Nanomedicine, 2014. 10(1): p. 89-98.
43. Wu, Q., et al., Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere, 2013. 90(3): p. 1123-31.
44. Rui, Q., et al., Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere, 2013. 93(10): p. 2289-96.
45. Wang, J., et al., TiO2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process. Ecotoxicol Environ Saf, 2018. 162: p. 160-169.
46. Sonane, M., N. Moin, and A. Satish, The role of antioxidants in attenuation of Caenorhabditis elegans lethality on exposure to TiO2 and ZnO nanoparticles. Chemosphere, 2017. 187: p. 240-247.
47. Olmedo, D.G., et al., The issue of corrosion in dental implants: a review. Acta Odontol Latinoam, 2009. 22(1): p. 3-9.
48. Erriquez, J., et al., Nanosized TiO2 is internalized by dorsal root ganglion cells and causes damage via apoptosis. Nanomedicine, 2015. 11(6): p. 1309-19.
49. Martinez-Finley, E.J., et al., Insights from Caenorhabditis elegans on the role of metals in neurodegenerative diseases. Metallomics, 2011. 3(3): p. 271-9.
50. Aitlhadj, L., et al., Environmental exposure, obesity, and Parkinson's disease: lessons from fat and old worms. Environ Health Perspect, 2011. 119(1): p. 20-8.
51. Djafari, J., et al., Synthesis of Gold Functionalised Nanoparticles with the Eranthis hyemalis Lectin and Preliminary Toxicological Studies on Caenorhabditis elegans. Materials (Basel), 2018. 11(8).
52. Hanna, S.K., et al., Agglomeration of Escherichia coli with Positively Charged Nanoparticles Can Lead to Artifacts in a Standard Caenorhabditis elegans Toxicity Assay. Environ Sci Technol, 2018. 52(10): p. 5968-5978.
53. Jin, S., et al., Surface chemistry-mediated penetration and gold nanorod thermotherapy in multicellular tumor spheroids. Nanoscale, 2013. 5(1): p. 143-6.
54. Ma, X., et al., Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano, 2011. 5(11): p. 8629-39.
55. Jiang, Y., et al., The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles. ACS Nano, 2015. 9(10): p. 9986-93.
56. Albanese, A., P.S. Tang, and W.C. Chan, The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng., 2012. 14: p. 1-16.
57. Liu, C.J., et al., Simple Dose Rate Measurements for a Very High Synchrotron X-ray Flux. J. Synchrotron. Radiat., 2009. 16(Pt 3): p. 395-7.
58. Lewis, J.A. and J.T. Fleming, Basic culture methods. Methods Cell Biol, 1995. 48: p. 3-29.
59. Sui, N., et al., Magnetic and optical properties of Ag@SiO2-FITC-Fe3O4 hybrid nanoparticles. Materials Science and Engineering: B, 2014. 182: p. 92-95.
60. Christensen, M., et al., A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron, 2002. 33(4): p. 503-14.
61. Strange, K., M. Christensen, and R. Morrison, Primary culture of Caenorhabditis elegans developing embryo cells for electrophysiological, cell biological and molecular studies. Nat Protoc, 2007. 2(4): p. 1003-12.
62. Tien, N.W., et al., Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons. Neurobiol Dis, 2011. 43(2): p. 495-506.
63. Portman, D.S., Profiling C. elegans gene expression with DNA microarrays. WormBook, 2006: p. 1-11.
64. Weng, L., et al., Rosetta error model for gene expression analysis. Bioinformatics, 2006. 22(9): p. 1111-21.
65. Sugnet, C.W., et al., Transcriptome and genome conservation of alternative splicing events in humans and mice. Pac Symp Biocomput, 2004: p. 66-77.
66. Harris, T.W., et al., WormBase: a comprehensive resource for nematode research. Nucleic Acids Res, 2010. 38(Database issue): p. D463-7.
67. Roh, J.Y., et al., Ecotoxicological investigation of CeO(2) and TiO(2) nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol, 2010. 29(2): p. 167-72.
68. Jung, S.K., et al., Multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans. Environ Sci Technol, 2015. 49(4): p. 2477-85.
69. Edgar, R., M. Domrachev, and A.E. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res, 2002. 30(1): p. 207-10.
70. Rocheleau, S., et al., Toxicogenomic effects of nano- and bulk-TiO2 particles in the soil nematode Caenorhabditis elegans. Nanotoxicology, 2015. 9(4): p. 502-12.
71. Braeckman, B.P., K. Houthoofd, and J.R. Vanfleteren, Assessing metabolic activity in aging Caenorhabditis elegans: concepts and controversies. Aging Cell, 2002. 1(2): p. 82-8; discussion 102-3.
72. Nativo, P., I.A. Prior, and M. Brust, Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano, 2008. 2(8): p. 1639-44.
73. Herd, H., et al., Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano, 2013. 7(3): p. 1961-73.
74. Untener, E.A., et al., Tannic acid coated gold nanorods demonstrate a distinctive form of endosomal uptake and unique distribution within cells. ACS Appl Mater Interfaces, 2013. 5(17): p. 8366-73.
75. Uboldi, C., et al., Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicol In Vitro, 2016. 31: p. 137-45.
76. Fenoglio, I., et al., Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Chemistry, 2009. 15(18): p. 4614-21.
77. Lipovsky, A., et al., The different behavior of rutile and anatase nanoparticles in forming oxy radicals upon illumination with visible light: an EPR study. Photochem Photobiol, 2012. 88(1): p. 14-20.
78. Zhu, M., et al., Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res, 2013. 46(3): p. 622-31.
79. Ma, H., et al., Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution. Environ Pollut, 2014. 193: p. 165-72.
80. Liu, X., et al., A protein interaction network for the analysis of the neuronal differentiation of neural stem cells in response to titanium dioxide nanoparticles. Biomaterials, 2010. 31(11): p. 3063-70.
81. Iavicoli, I., et al., Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci, 2011. 15(5): p. 481-508.
82. Yu, S., et al., Acrylamide-induced changes in the neurofilament protein of rat cerebrum fractions. Neurochem Res, 2005. 30(9): p. 1079-85.
83. Gonzalez-Moragas, L., et al., In vivo Testing of Gold Nanoparticles Using the Caenorhabditis elegans Model Organism. Acta Biomater., 2017. 53: p. 598-609.
84. Johnstone, I.L., The cuticle of the nematode Caenorhabditis elegans: a complex collagen structure. Bioessays, 1994. 16(3): p. 171-8.
85. Selck, H., et al., Nanomaterials in the Aquatic Environment: A European Union-United States Perspective on the Status of Ecotoxicity Testing, Research Priorities, and Challenges Ahead. Environ. Toxicol. Chem., 2016. 35(5): p. 1055-67.
86. Hu, C.C., et al., Uptake of TiO2 Nanoparticles into C. elegans Neurons Negatively Affects Axonal Growth and Worm Locomotion Behavior. ACS Appl. Mater. Interfaces, 2018. 10(10): p. 8485-8495.
87. Gao, Y., et al., Mapping Technique for Biodistribution of Elements in a Model Organism, Caenorhabditis elegans, After Exposure to Copper Nanoparticles with Microbeam Synchrotron Radiation X-ray Fluorescence. J. Anal. At. Spectrom., 2008. 23(8): p. 1121-1124.
88. Yang, X., et al., Silver Nanoparticle Behavior, Uptake, and Toxicity in Caenorhabditis elegans: Effects of Natural Organic Matter. Environ. Sci. Technol., 2014. 48(6): p. 3486-95.
89. Clokey, G.V. and L.A. Jacobson, The autofluorescent "lipofuscin granules" in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech Ageing Dev, 1986. 35(1): p. 79-94.
90. Forge, T.A. and A.E. Macguidwin, Nematode autofluorescence and its use as an indicator of viability. J Nematol, 1989. 21(3): p. 399-403.
91. Pincus, Z., T.C. Mazer, and F.J. Slack, Autofluorescence as a measure of senescence in C. elegans: look to red, not blue or green. Aging (Albany NY), 2016. 8(5): p. 889-98.
92. Wu, Q., et al., Small Sizes of TiO2-NPs Exhibit Adverse Effects at Predicted Environmental Relevant Concentrations on Nematodes in a Modified Chronic Toxicity Assay System. J. Hazard Mater., 2012. 243: p. 161-8.
93. Moon, J., et al., Multigenerational Effects of Gold Nanoparticles in Caenorhabditis elegans: Continuous Versus Intermittent Exposures. Environ. Pollut., 2017. 220(Pt A): p. 46-52.
94. Matulionyte, M., et al., Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species. Int. J. Mol. Sci., 2017. 18(2): p. 378.
95. Tsyusko, O.V., et al., Toxicogenomic Responses of the Model Organism Caenorhabditis elegans to Gold Nanoparticles. Environ. Sci. Technol., 2012. 46(7): p. 4115-24.
96. Baranes, K., et al., Gold Nanoparticle-Decorated Scaffolds Promote Neuronal Differentiation and Maturation. Nano Lett., 2016. 16(5): p. 2916-20.
97. Li, J. and W. Le, Modeling Neurodegenerative Diseases in Caenorhabditis elegans. Exp. Neurol., 2013. 250: p. 94-103.
98. Therrien, M. and J.A. Parker, Worming Forward: Amyotrophic Lateral Sclerosis Toxicity Mechanisms and Genetic Interactions in Caenorhabditis elegans. Front. Genet., 2014. 5: p. 85.
99. Chege, P.M. and G. McColl, Caenorhabditis elegans: A Model to Investigate Oxidative Stress and Metal Dyshomeostasis in Parkinson's Disease. Front. Aging Neurosci., 2014. 6: p. 89.
100. Lai, S.F., et al., Gold Nanoparticles as Multimodality Imaging Agents for Brain Gliomas. J. Nanobiotechnology, 2015. 13: p. 85.