研究生: |
王敬皓 Wang, Ching-Hao |
---|---|
論文名稱: |
Nonlinear Scattering and Localised Bound State of One-dimensional Bright Solitons |
指導教授: |
王道維
Wang, Daw-Wei |
口試委員: |
洪在明
Hong, Tzay-Ming 仲崇厚 Chung, Chung-Hou |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 38 |
中文關鍵詞: | 非線性物理 、冷原子 、原子分子與光學物理 、量子力學 |
外文關鍵詞: | nonlinear physics, cold-atom, AMO physics, quantum mechanics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Soliton, by definition, is a non-linear collective dynamics, exhibiting a non-dispersive wavefront during its propagation in space. A direct but nontrivial question is how stable a soliton can be against collisions with a disorder potential and to what extent the nonlinearity changes the qualitative behaviour of the scattering. In this work, we systematically investigate the scattering of bright solitons through a simple delta function defect. Different from existing literature, we present a global phase diagram of transmission coefficients and derive the phase boundary for transition of quantum reflection/transmission. Moreover, we give a necessary condition for the existence of bound states using simple arguments. Finally, we proposed a practical model that captures the location of this transition in the phase diagram.
[1] F. Dalfovo et al. Rev. Mod. Phys. 71, 463 (1999)
[2] C. J. Pethick and H. Smith Bose-Einstein Condensation in Dilute Gases (Cambridge Univ. Press, 2008)
[3] A. C. Newell, J. Moloney, Nonlinear Optics (Addison Wesley, 1992)
[4] A. Gasegawa, Optical Solitons in Fibers (Springer-Verlag, Berlin, 1990)
[5] Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763 (1989).
[6] C. Lee and J. Brand, Europhys. Lett. 73, 321 (2006).
[7] T. Ernst and J. Brand, Phys. Rev. A 81, 033614 (2010)
[8] Hidetsugu Sakaguchi and Mitsuaki Tamura, J. Phys. Soc. Jpn. 74, 292 (2005)
[9] B. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A 71, 033622 (2005).
[10] T. Paul, P. Schlagheck, P. Leboeuf, and N. Pavloff, Phys. Rev. Lett. 98, 210602 (2007).
[11] V. Hakim, Phys. Rev. E 55, 2835 (1997).
36
[12] N. Pavloff, Phys. Rev. A 66, 013610 (2002).
[13] B. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A 71, 033609
(2005).
[14] D. Witthaut, S. Mossmann, and H. J. Korsch, J. Phys. A: Math. Gen.
38, 1777 (2005).
[15] Justin Holmer, Jeremy Marzuola, and Maciej Zworski, Comm. Math.
Phys. 274, 187 (2007)
[16] Justin Holmer, Jeremy Marzuola, and Maciej Zworski, Nonlinear Sci-
ence 17, 349 (2007)
[17] Kirl Datchev and Justin Holmer, Comm. PDE 34, 1074 (2009).
[18] Justin Holmer and Maciej Zworski, Modern Dynamics 1, 689 (2007).
[19] Lincoln D. Carr, Rachel R. Miller, Daniel R. Bolton, arXiv:1006.5519v1
[20] L. D. Carr and Y. Castin, Phys. Rev. A 66, 063602 (2002)
[21] L. Khaykovich, et al. Science 296, 1290 (2002);
[22] Guoxiang Huang, L. Deng, Jiaren Yan, Bambi Hu, Physics Letters A 357, 150(2006)
[23] R. Kanamoto, et’al., Phys. Rev. A 67, 013608 (2003)
[24] Thomas Ernst and Joachim Brand Phys. Rev. A 81, 033614 (2010)
[25] David J. Griffiths, Introduction to Quantum Mechanics (Pearson Pren- tice Hall, 2005)
37
[26] T. R. Taha and M. J. Ablowitz, J. Comput. Phys. 55 (2): 203 30 (1984).