研究生: |
林君萍 Lin, Chun-Ping |
---|---|
論文名稱: |
高頻調變紅光發光二極體之研製 The Development of High-Speed Red Light Emitting Diodes |
指導教授: |
吳孟奇
Wu, Meng-Chyi 何充隆 Ho, Chong-Long |
口試委員: |
劉埃森
黃俊元 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 發光二極體 、磷鋁化銦鎵 |
外文關鍵詞: | Light emitting diodes, AlGaInP |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,不論在磊晶、製程或封裝層面上,發光二極體(LED)產業皆有長足的進展,不僅在發光效率上超越代表綠能門檻的100 lm/W,其與生俱來的小體積、易調變、多色光、長壽命等特點,在在凸顯固態照明為大勢所趨,使民生照明更儼然成為產業必爭之地。
在本論文中,我們設計開發以磷鋁化銦鎵為材料之可高頻調變紅光發光二極體,採用高橫向阻值磊晶層設計與低接觸電阻之氧化鋅系列透明導電膜技術構成自我侷限電流注入結構,促使電流注入密度提升與均化,並設計不同之主動區徑長及焊線墊俓長。我們將探討元件之設計理念,規劃進行元件製程,及不同元件之特性分析。我們將藉由製程及不同元件尺寸的實測,了解操作頻率的限制主因,萃取模型必要參數,在不影響其他參數下,找出最適規格及進行最佳化設計。結果顯示元件尺寸越小,將有越高之頻率響應,其原因是小尺寸元件有相對較高之電流密度注入縮短載子生命期及較小之寄生電容限制頻寬,而能操作於高頻調變。
In recent years, the light emitting diode (LED) industry have considerable development not only in epitaxial process but also in aspect of package. It’s luminous efficiency has already exceed 100 lm/W, which is the threshold of the green energy representative. Their small mass and volume, solid state construction, multi-color, easy modulation, and long-life characteristics make the solid state lighting become a general trend, and bring a competitive market in people's livelihood and lighting.
In our dissertation, we demonstrate a high-speed AlGaInP-based light-emitting diode at wavelength of around 650nm using the wet etching to forming self-confined current injection structure with different diameter of mesa, and the different dimension of bonding pad. And we discusses the design concept, fabrication and performance characteristics of different LEDs device parameters. Our efforts were directed at finding the best compromise between device characteristics and at devising ways to improve modulation behavior without essentially affecting the other parameters. The smaller device dimension will thus lead to the higher 3dB frequency bandwidth. It is attributed to the shorter carrier lifetime at higher current density and smaller RC time constant limited bandwidth.
Reference:
[1] K. Kobayashi, S. Kawata, A. Gomyo, I. Hino and T. Suzuki “Room-temperature cw operation of AlGaInP double-heterostructure visible lasers,” Electron. Lett. 21, 931 , 1985.
[2] Y., Ohba M. Ishikawa, H. Sugawara, T. Yamamoto, and T. Nakanisi, “Growth of high-quality InGaAlP epilayers by MOCVD using methyl metalorganics and their application to visible semiconductor lasers,” J. Cryst. Growth 77, 374 , 1986.
[3] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L M. C. ardizabel, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. 57, 2937, 1990.
[4] R. M. Fletcher, C. Kuo, T. D. Osentowski, and V. M. Robbins, “Light-emitting diode with an electrically conductive window,” U.S. Patent 5,008,718, 1991.
[5] C. H. Chen, S. A. Stockman, M. J. Peanasky, and C. P. Kuo, “OMVPE of AlGaInP for high-efficiency visible light-emitting diodes,” in High Brightness Light Emitting Diodes edited by G. B. Stringfellow and M. G. Craford, Semiconductors and Semimetals 48, (Academic Press, San Diego, 1997)
[6] H. C. Casey, Jr. and M. B. Panish, “ Heterostructure Lasers,” New York, Academic, Part B, p. 3, 1978.
[7] H. Sugawara, K. Itaya, H. Nozaki and G. Hatakoshi, “High‐brightness InGaAlP green light‐emitting diodes,” Appl. Phys. Lett. 61, pp. 1775-1777, 1992.
[8] W. Chow, K. Choquette, M. Crawford, K. Lear, and G. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 33, pp. 1810–1824, Oct. 1997.
[9] K.-H. Huang and n T.-P. Che, “Light-emitting diode structure,” US Patent 5,661,742, 1997.
[10] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L M. C. ardizabel, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. 57, 2937, 1990.
[11] H. Sugawara, M. Ishikawa, N. Yoshihiro, Y. Nishikawa, and S. Naritsuka, “semiconductor light emitting device,” U.S. Patent 5 048 035, Sep. 10, 1911.
[12] S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chang, Y. R. Wu, K. H. Huang and T. P. Chen, “AlGaInP multiquantum well lighting-emitting diodes,” IEE Proceeding-Optoelectronics, vol. 144, p. 1,1977.
[13] K. H. Huang and T. P. Chen,” Lighting-emitting structure,” U.S. Patent 5,661,742,1997.
[14] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Flectcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlXGa1-X)0.5In0.5P/GaP lighting-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839-2841, May 23, 1994.
[15] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, Member, IEEE, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 310-320, 2002.
[16] S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chen, Y. R. Wu, K. H. Huang and T. P. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Tech. Lett. 9, p. 182, 1997.
[17] S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chen, Y. R. Wu, K. H. Huang and T. P. Chen, “AlGaInP yellow-green light-emitting diodes with a tensile strain barrier cladding layer,” IEEE Photon. Tech. Lett. 9, p. 1199,1997.
[18] A. Neyer, B. Wittmann, and M. hnck, “Plastic-optical-fiber-based parallel optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5, 193, 1999.
[19] T. Nyu, M. Momona, S. Yamazaki, A. K. Dutta, and A. Suzuki, “Fast ethernet system with high speed plastic fiber data links,” in OFC’96, Tech. Dig., vol. 2, 1996, pp. 221–223.
[20] A. Kumar Dutta, A. Suzuki, K. Kurihara, F. Miyasaka, H. Hotta and K. Sugita, “High-brightness, AlGaInP-based, visible light-emitting diode for efficient coupling with POF,” IEEE Photon. Tech. Lett. 7, p. 1134, 1995
[21] Information Gatekeepers, Inc., “Present state-of-the-art of plastic optical fiber (POF) components and systems,” presented at the Plastic Optical Fiber Trade Organization (POFTO) Brighton, MA, 2004, unpublished.
[22] B. V. Dutt, J. H. Racette, S. J. Anderson, F. W. Scholl and J. R. Shealy, “AlGaInP/GaAs red edge‐emitting diodes for polymer optical fiber applications,” Appl. Phys. Lett. 53 ,p. 2091,1988.
[23] R. J. Bula, D. J. Tennessen, R. C. Morrow and T. W. Tibbitts, “Light Emitting Diodes as A Plant Lighting Source,” in Proc. Int. Lighting in Controlled Environments Workshop, 1994.
[24] R. C. Jao and W. Fang, “Development of a Flexible Lighting System for Plant Related Research Using Super Bright Red and Blue Light Emitting Diodes,” Acta Hort., vol. 578, pp. 133-139, 2001.
[25] R. C. Jao and W. Fang, “Effects of Frequency and Duty Ratio on the Growth of Potato Plantlets In Vitro Using Light Emitting Diodes,” HortScience, vol. 39, no. 2, pp. 375-379, 2004.
[26] R. Emerson and W. Arnold, “A Separation of the Reactions in Photosynthesis by Means of Intermittent light,” J. Gen. Physiol., vol. 15, pp.391-420, 1932.
[27] H. C. Casey, Jr. and F. Stern, “Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys. 47, 63, 1976
[28] T. P. Lee and A. G. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” IEEE J. Quantum Electron., vol. 14, pp. 150–159, 1978.
[29] L. B. Chang, D. H. Yeh, L. Z. Hsieh, and S. H. Zeng, “Enhanced modulation rate in platinum-diffused resonant-cavity light-emitting diodes,”J. Appl. Phys., vol. 98, p. 093504, Nov. 2005.
[30] C. L. Tsai, C. W. Ho, C. Y. Huang, F. M. Lee, M. C. Wu, H. L. Wang, S. C. Ko, W. J. Ho, J. Huang and J. R. Deng, “Fabrication and characterization of 650 nm resonant-cavity light-emitting diodes,” J. Vac. Sci. Technol. B 22(5), pp. 2518-2521, 2004.
[31] Choquette, K. D., R. P. Schneider, et al., “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation." Electron. Lett. 30(24): pp. 2043, 1994.
[32] M. Jalonen, M. Toivonen, J. Köngäs, P. Savolainen, A. Salokatve, and M. Pessa, “Oxide-confined AlGaInP/AlGaAs visible resonant cavity light-emitting diodes grown by solid source molecular beam epitaxy,” in LEOS 10th Annual Meeting 97, Nov. 10-13, 1997, pp. 239–240.
[33] R.Wirth, C. Karnutsch, S. Kugler, and K. Streubel, “High efficiency resonant-cavity LED’s emitting at 650 nm,” IEEE Photon. Technol. Lett., vol. 13, pp. 421–423, May 2001.
[34] R. Wirth, B. Mayer, S. Kugler and K. Streubel,“Fast LEDs for polymer optical fiber communication at 650nm,”In Proc. of SPIE, vol. 6013, pp. 60130F1-8, 2005.
[35] Thompson G. H. B. Physics of Semiconductor Laser Devices (John Wiley and Sons, New York, 1980)
[36] Rensselaer Polytechnic Institute, Troy, New York.,“ LIGHT-EMITTING DIODES,’’ Second Edition, E. Fred Schubert.
[37] Sze S M 1981 Physics of Semiconductor Devices 2nd edn
[38] A. Gomyo and T. Suzuki, “Observation of Strong Ordering in GaxIn1-xP alloy semiconductors,’’ Phys. Rev. Lett. 60, pp. 2645-2648, 1988.
[39] D. P. Bour, J. R. Shealy, G. W. Wicks, and W. J. Schaff, “Optical properties of AlxIn1−xP grown by organometallic vapor phase epitaxy,’’ Appl. Phys. Lett. 50, p. 615 , 1987.
[40]http://www.ee.buffalo.edu/faculty/cartwright/java_applets/quantum/numerov/index.html
[41] M. Kondo, K. Domen, C. Anayama, T. Tanahashi and K. Nakajima, “MOVPE growth and optical properties of A1GaInP/ GaInP strained single quantum well structures,’’ J. Crystal Growth 107, pp. 578-582, 1991.
[42] X. H. Zhang, S. J. Chua and W. J. Fan, “Band offsets at GaInP/AlGaInP 001 heterostructures lattice matched to GaAs,’’ J. Appl. Phys., vol. 73, no. 8, 1998.
[43] K. R. Linga, G. H. Olsen, V. S. Ban, A. M. Joshi, “Dark Current Analysis and Characterization of InxGa1-xAs/InAsyP1-y Graded Photodiodes with x>0.53 for Response to Longer Wavelengths ( > 1.7pm),” J. Lightwave Technology., vol. 10, no. 8, 1992.