研究生: |
黃麗娟 Li-Chuan Huang |
---|---|
論文名稱: |
血管自動調節之血氧程度相關功能性磁振造影 Vascular autoregulation: a BOLD fMRI study |
指導教授: |
許靖涵
Ching-Han Hsu 葉子成 Tzu-Chi Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 功能性磁振影像 、BOLD 、血管自動調節 、腦血管反應圖 |
外文關鍵詞: | BOLD, fMRI, vascular autoregulation, hypercapnia, cerebral vascular reactivity maps |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非侵襲性的血氧程度相關功能性磁振造影(BOLD fMRI) 已是目前用在研究大腦活動相當普遍且可靠的一種方法。主要是藉由神經活動和血液動力學之間的連結間接地觀察神經活動。藉由吸入不同濃度(1-5%)的二氧化碳混合氣體為刺激方法,調控影響BOLD效應的生理機制血液動力學中的腦血流(cerebral blood flow, CBF) 因子;以blip-EPI脈衝波序在3T MR磁振造影儀取像,即時量測動態二氧化碳改變所造成BOLD訊號的變化,得到相關統計參數腦血管反應圖(cerebral vascular reactivity maps)及校正曲線。藉由觀察得到的訊號差異、統計相關反應圖做為受試者施行BOLD fMRI反應的預測、和血管自動調節功能及血管殘存的評估依據。結果顯示受試者的平均BOLD訊號改變為1.36±1.73% (平均±SD, 1%CO2) 至 7.78±3.68% (平均±SD, 5%CO2),且女性的反應比男性來得顯著。在1-5%的二氧化碳濃度範圍和BOLD訊號變化間呈現劑量依存(dose-dependent)且可觀察到BOLD訊號會隨CO2濃度改變重覆地被調控。由腦血管反應圖觀察到反應區域的分佈是一整體的效應;而對於執行握拳的運動工作時,吸入5%的二氧化碳比呼吸空氣平均有1.45±1.43% (平均±SD)的BOLD百分比增強及8-9倍顯著的空間體素增加效應。本研究在探討二氧化碳和BOLD訊號間之動態連結及血管自動調節之視覺化,並可進一步應用於腦血管疾病或生理病變時的fMRI研究。
The principal objective of the present study was to investigate the autoregulation mechanism of cerebral vascular and predication of BOLD fMRI response with BOLD vascular reactivity maps and calibration curve. By assuming no significant increase in CMRO2 during mild hypercapnia, we measure cerebral global hemodynamic changes induced by inhalation of graded CO2 (1-5%) gas mixture by utilizing blood oxygenation level dependent (BOLD) fMRI technique. In 3T MRI system, we used the global hypercapnia stimulation to modulate hemodynamic factors and estimated the change of cerebral vascular reactivity (CVR) by BOLD signal of human brain. In 11 healthy volunteers, T2* weighted gradient echo blip-EPI was applied for the mixed trial paradigm of alternating periods of inhalation graded CO2 for 1 min after air breathing for 2 min. The averaged BOLD signal changes of subjects are 1.36 ± 1.73% (mean±SD, 1%CO2) to 7.78 ± 3.68% (mean±SD, 5% CO2), with gender difference of female dominance in CO2 response. Lesion studies of brain tumor and post-operation showed the lack of autoregulation response, as demonstrated by graded CO2 study and CVR mapping. Inhalation of 5%CO2 during performing hand-clenching motor task, as compared to control with air breathing during motor task, can enhance the BOLD signal by 1.45± 1.43%(mean±SD) and spatial extension by a factor of 8-9. Established methodology of this work enhances investigation and visualization of dynamic coupling between CO2 and BOLD signal changes, which plays the key role in fMRI studies and pathophysiology of cerebral vascular diseases.
1.Xiong, J., Fox, P.T.& Gao, J.H. “Directly mapping magnetic field effect of neuronal activity by magnetic resonance imaging,” Hum Brain Mapp.20: 41-49 (2003).
2.Bandettini, P.A., Wong, E.C., Hinks, R.S., Tikofsky, R.S. & Hyde., J.S.“Time course EPI of human brain function during task activation, ” Magn. Reson. Med. 25: 390-397 (1992)
3.Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H.M., Brady, T.B. & Rosen, A.B. “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89: 5675-5679 (1992)
4.Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.G., Merkle, H. & Ugurbil, K. “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. USA 89: 5951-5955 (1992)
5.Ogawa, S., Lee, T.M., Kay, A.R. & Tank, D.W. “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Natl. Acad. Sci. USA 87: 9868-9872 (1990)
6.Fox, P.T. & Raichle, M.E. “Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects,” Proc. Natl. Acad. Sci. USA 83: 1140-1144 (1986)
7.Fox, P.T. Raichle, M.E., Mintun, M.A. & Dence, C.“Nonoxidative glucose consumption during focal physiologic neural activity,” Science 241: 462-464 (1988)
8.Hoge, R.D., Atkinson, Jeff., Gill, Brad., Crelier, G.R., Marrett, Sean. & Pike G..B. “Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex,” Proc. Natl. Acad. Sci. USA 96: 9403-9408 (1999a)
9.Hoge, R.D., Atkinson, Jeff., Gill, Brad., Crelier, G.R., Marrett, Sean. & Pike G.B. “Investigation of BOLD signal Dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution Model,” Magn. Reson. Med. 42: 849-863 (1999b)
10.Kastrup, A., Krüger, G., Tobias, N.H., Glover, G.H. & Moseley, M.E. “Changes of cerebral blood flow, oxygenation, and oxidative metabolism during Graded motor activation,” NeruoImage 15: 74-82 (2002)
11.Blaha, M., Aaslid, R., Douville, C.M., Correra, R.& Newell,D. W. “Cerebral blood flow and dynamic cerebral autoregulation during ethanol intoxication and hypercapnia,” Journal of clinical neuroscience.10(2):195-198 (2003)
12.Mulderink, T.A., Gitelman, D.R., Mesulam, M.M. & Parrish, T.B. “On the use of caffeine as a contrast booster for BOLD fMRI studies,” NeuroImage 15: 37-44 (2002)
13.Kastrup, A., Krüger, G., Tobias Neumann-Haefelin. & Moseley, M.E. “Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of CO2 and breath holding,” Magn. Reson. Imag. 19: 13-20 (2001)
14.Hsu, Y.Y., Chang, C.N., Jung, S.M., Lim, K-E., Huang, J.C., Fang, S.Y.& Liu, H. L. “Blood oxygenation level dependent MRI of cerebral gliomas during breath holding,” Magn. Reson. Imag. 19: 160-167 (2004)
15.Gregory Krolczyk, B.Sc. “Cerebral vascular reactivity evaluation by BOLD fMRI,” University of Toronto Medical Journal. 79: 18-21 (2001)
16.Bandettini, P.A. & Wong, E.C. “A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI,” NMR Biomed. 10:197-203 (1997)
17.Davis, T.L., Kwong, K.K., Weisskoff, R.M. & Rosen, B.R. “Calibrated functional MRI: mapping the dynamics of oxidatived metabolism,” Proc. Natl. Acad. Sci. USA 95: 1834-1839 (1998)
18.Schwarzbauer, C., Heinke, W. “Investigating the dependence of BOLD contrast on oxidative metabolism,” Magn. Reson. Med. 41: 537-543 (1999)
19.Ogawa, S., Lee, T.M. & Barrere, B. “The sensitivity of magnetic resonance image signal of a rat brain to change in the cerebral venous blood oxygenation,” Magn. Reson. Med. 29: 205-210 (1993)
20.Roy, C.S. & Sherrington, S.C. “On the regulation of the blood-supply of the brain,” J Physiol 11: 85-108 (1890)
21.Kim, S.G. “Progress in understanding functional imaging signals,” Proc. Natl. Acad. Sci. USA 100: 3350-3352 (2003)
22.Duong, T.Q., Yacoub, E., Adriany, G., Hu, X.P., Ugurbil, K. & Kim, S.G. “Microvascular BOLD contribution at 4 and 7T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects,” Magn. Reson. Med. 49: 1019-1027 (2003)
23.Kanno, I. & Matsuura, T. “Physiological basis for mapping brain activation through vascular response,” International congress series. 1232: 83-89 (2002)
24.Belliveau, P. A., Kennsdy, D. N., Mckinstry, R. C., Buchbinder,B. R., Weisskoff, R. M., Cohen, M. S., Vevea, J. M., Brady, T. J.& Rosen, B. R. “Functional mapping of the human visual cortex by magnetic resonance imaging,” Science254: 716-719 (1991)
25.Mandeville, J.B., Marota, J.J., Kosofsky, B.E., Keltner, J.R., Weissleder, R., Rosen, B.R. & Weisskoff, R.M. “Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation,” Magn. Reson. Med. 39: 615-624 (1998)
26.Buxton, R.B., Wong, E.C. & Frank, L.R. “ Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39: 855-864 (1998)
27.Lythgoe, D.J., Williams, S. C.R., Cullinane, M. & Markus, A.H. “Mapping of cerebrovascular reactivity using BOLD magnetic resonance imaging,” Magn. Reson. Imag. 17: 495-502 (1999)
28.Röther, J., Kanb, R., Hamzei, F., Fiehker, J., Reichenbach, J.R., Büchel, C. & Weiller, C. “Negative dip in BOLD fMRI is caused by blood flow-oxygen consumption uncoupling in humans,” NeuroImage 15: 98-102 (2002)
29.Duong, T.Q., Costantino, I. & Kim, S.G. “Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow,” Magn. Reson. Med. 45: 61-70 (2001)
30.Kastrup, A., Krüger, G., Glover, G.H., Tobias, N.H., & Moseley, M.E. “Regional variability of cerebral blood oxygenation response to hypercapnia,” NeruoImage 10: 675-681 (1999)
31.Brannan, S., Liotti, M., Egan, G., Shade, R., Madden, L., Robillard, R., Abplanalp, B., Stofer, K., Denton, D. & Fox, P.T. “Neuroimaging of cerebral activations and deactivations associated with hypercapnia and hunger for air,” Proc. Natl. Acad. Sci. USA 98: 2029-2034 (2001)
32.Buxton, R.B. & Frank, L.R. “A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation,” J. Cereb. Bloob Flow Metabol. 17: 64-72 (1997)
33.Johnny, E.J. "Carbon dioxide and cerebral circulation," Anesthesiology. 88: 1365-1386 (1998)
34.Moonen, C.T.W. & Bandettini, P.A. “Functional MRI”. Springer - Verlag, Berlin (1999)
35.Richard B. Buxton. “Introduction to functional magnetic resonance imaging- principles and techniques”. Cambridge university press (2002)
36.Richard S.J. Frackowiak, Karl J. Friston Christopher D. Frith, Raymond J. Dolan, Cathy J. Price, Semir Zeki, John Ashburner. & William Penny. “ Human brain function”.CH2.p33-44,Elsevier Science(2004)
37.Arthur, V., James, S & Dorothy, L. “Human physiology: the mechanisms of body function”. CH15: P.461-501, McGraw-Hill (1998)
38.Elaine N. Marieb, R.N.& Jon Mallatt. “Human Anatomy.” Ch12, p325. Benjamin/Cummings (1997)