簡易檢索 / 詳目顯示

研究生: 邱稜翔
Chiu, Leng-Hsiang
論文名稱: 優化硒化製程在製備銅銦鋁硒太陽能電池之研究
Fabrication of Cu(In,Al)Se2 solar cell with optimized selenization process
指導教授: 黃惠良
Hwang, Huey-Liang
口試委員: 曾百亨
林堅楊
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 133
中文關鍵詞: 銅銦鋁硒太陽能電池硒化製程濺鍍製作
外文關鍵詞: CIAS solar cell, selenization process, sputtering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,主要研究目的為延續學長的研究,將 Cu(In,Al)Se2太陽能電池效率提升,在實驗過中分別利用射頻及直流濺鍍機沈積Cu-In-Al(比例為 0.9:0.85:0.15)合金靶前驅物,比較並分析在同樣的硒化參數下,Cu(In,Al)Se2 吸收層薄膜特性。由於 Cu(In,Al)Se2與Mo介面潔淨度及 Cu(In,Al)Se2 薄膜特行的分析結果選擇使用直流濺鍍機沈積前驅物,再調整不同的前驅物沈積條件(背景壓力)、硒化溫度、硒化時間、硒粉末重量等因素對於 Cu(In,Al)Se2薄膜做特性的分析。在實驗過程中發現當背景壓力在6.8×10^(-7)Torr以下前驅物的特性較佳,且硒化溫度在530oC以及20分鐘的硒化時間,在 XRD scan 以及 Raman Spectrum 的分析下 Cu(In,Al)Se2有較佳的薄膜特性。加入鋁 (Al)在Cu(In,Al)Se2和Mo之間改善接面黏著性的問題,並加入i-ZnO在CdS和Al:ZnO 之間改善開路電壓以及並聯電阻,最後使用E-Gun沈積鋁(Al)作為前電極增並增加電子收集的能力。
    在此次研究中,達到最好的效率為2.25%,其開路電壓(Voc)為0.24V,短路電流(Jsc)為25.69mA/cm^(2),填充因子(F.F.)為0.36。


    The main purpose of this research is to improve the efficiency of Cu(In,Al)Se2 solar cells by optimizing the selenization process for Cu(In,Al)Se2 absorber layer. We analyzed the quality of the Cu(In,Al) 〖Se〗_2 films obtained by RF and DC sputter methods using alloy target precursor of Cu-In-Al alloy target with ratio of components (Cu:In:Al) 0.9:0.85:0.15. Same process parameters are used for the selenization of DC sputtered and RF sputtered Cu-In-Al precursor films. DC sputtered Cu-In-Al precursor layer gave rise to better quality Cu(In,Al)Se2 absorber layer after selenization process with better interface between Cu(In,Al)Se2 and Mo layers than in the case of RF sputtered. This provides the advantage of depositing Cu-In-Al precursor layer just after depositing Mo back contact layer in the same DC sputter chamber as an in-line process. Various deposition conditions such as base pressure, selenization process duration, temperature and amount of selenium powder are varied to optimize the process conditions to obtain device quality Cu(In,Al)Se2 films.
    Finally from the XRD scan and Raman Spectrum analysis we realized that the best Cu(In,Al)Se2 absorber layer can be obtained with a background pressure of 6.8×10^(-7) Torr the selenization duration temperature of 530oC, and the selenization duration of 20 minutes at the heating rate of 50oC/min. And we also deposited Aluminum to improve the structure between the Cu(In,Al)Se2 and Mo adhesion, and added i-ZnO layer between CdS and Al:ZnO layers to improve the open circuit voltage (Voc)and the shunt resistance (R_sh). E- Gun was used to deposit Aluminum as the front electrode to increase the electron collection efficiency in the Cu(In,Al) 〖Se〗_2 solar cell.
    The solar cell fabricated with the best Cu(In,Al)Se2 absorber layer showed an efficiency of 2.25% with an open circuit voltage(Voc)of 0.24V, short-circuit current (Jsc) of 25.69mA/cm^(2)and the fill factor (F.F.) of 0.36 for the Cu(In,Al)Se2 solar cell.

    Contents Chapter 1 Introduction…………………………………………………1 1.1Theory of solar cell…………………………………………….2 1.1.1 Solar spectrum……………………………………………2 1.1.2 Optical Absorption in a Semiconductor……………………4 1.1.3 Absorption Coefficient……………………………………6 1.1.4 Operation principles of solar cell…………………………8 1.2 Types of solar cells………………………………………………21 1.3 Motivation…………………………………………………………23 1.4 References…………………………………………………………26 Chapter 2 solar cells………………………………....28 2.1 The development of CIAS solar cells……………………30 2.2 Structure and theory of CIAS solar cells………………...35 2.2.1 Structure of CIAS solar cells…………………………35 2.2.2 The theory of CIAS solar cells……………………….36 2.2.3 Absorption layer……………………………………………….38 2.2.4 Back contact layer……………………………………………...40 2.2.5 Buffer layer……………………………………………………..43 2.2.6 Window layer and Front contacts…………………………44 2.3 References…………………………………………………………46 Chapter 3 Experimental Techniques………………………………….54 3.1 Device process flow of CIAS solar cells………………...54 3.1.1 Substrate cleaning…………………………………………….55 3.1.2 The sputtering process………………………………………55 3.1.2.1 Fabrication of Back contact……………………………61 3.1.2.2 Fabrication of CIA precursor………………………61 3.1.3 Selenization process………………………………………62 3.1.4 Fabrication of CdS buffer layer…………………………64 3.1.5 Intrinsic ZnO layer…………………………………………..66 3.1.6 Fabrication of Window layer…………………………………68 3.2 Characterization Tools…………………………………………….69 3.2.1 Four point probe……………………………………………….69 3.2.2 Scanning Electron Microscope and Energy dispersive X-ray spectroscopy……………………………………...70 3.2.3 Raman Spectrometer……………………………………………74 3.2.4 X-ray diffraction technique…………………………………….76 3.2.5 UV/Visible Spectrophotometer…………………………………80 3.2.6 Solar simulator………………………………………………….81 3.2.7 Quantum efficiency…………………………………………….82 3.3 References…………………………………………………………83 Chapter 4 Results and Discussion…………………………………….86 4.1 Mo back contact layer…………………………………………….86 4.2 Deposition of CIA precursor…………………………...……89 4.3 Selenization………………………………………………………..93 4.4 CdS buffer layer………………………………………………….111 4.5 i-ZnOdeposition…………………………………………………116 4.6 Al:ZnOwindow layer……………..…………………………….116 4.7 Fabrication of CIAS solar cells………………………….123 4.8 References………………………………………………………...126 Chapter 5 Conclusion and Future work………………….………..128 5.1 Conclusion………………………………………………………..128 5.2 Future work………………………………………………………132 5.3 References………………………………………………………..133

    Chapter1:
    1.M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells, John Wiley, New York (2008).
    2.Photovoltaic Education Network ( http://pveducation.org/ )
    3.S.M. Sze, Semiconductor devices – Physics and Technology, John Willy & Sons (1985).
    4.Paresh Suresh Nasikkar, The development of CuIn1-xAlxSe2 thin films for use in photovoltaic solar cells, NPAC (1998).
    5.Ahmed Noemaun, Celine Chan and E. F. Schubert, Absorption coefficient of various semiconducting materials, ECSE (2011).
    6.Christiana Honsberg, Solar cell operation, University of Delaware, ECE/CIS (2008).
    7.Schubert, E. Fred, Light-Emitting Diodes, 2nd edition: Cambridge University Press (2006).
    8.Ever Power Company website ( www.everenergy.com.tw/ )
    9.M. Archer and R. Hill, Clean electricity from photovoltaics Series on Photoconversion of Solar Energy Vol. 1 Imperial College Press (2001).
    10.J. Nelson, The physics of solar cells, Imperial College Press (2003)
    11.Industrial Economics & Knowledge Center Report (2008).
    12.D.L. Staebler and C.R. Wronski, Appl. Phys. Lett., 31 292.
    13.Miguel A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L.Young, B. Egaas and R. Noufi, Progress in Photovoltaics: Research and Applications, Vol. 13, pp. 209-216, 2005.
    14.S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, and W.N. Shafarman, High-efficiency solar cells based on Cu(InAl)Se2 thin films, Applied Physics Letters, Vol. 81, No. 7, 2002.
    15.P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, and W. N. Shafarman, CuIn1-xAlxSe2 thin films and solar cells, Journal of Applied Physics, Vol. 91, No. 12, 2001.
    Chapter2:
    1.R. A. Mickelesm and W. S. Chen, Polycrystalline thin-flim CuInSe2 solar cells, Proceedings of the 16th IEEE Photovoltaic Specialists Conference, San Diego, CA, USA (1982) 781-785.
    2.H. S. Ullal and B. v. Roedern, Thin-film CIGS and CdTe photovoltaic technologies: Commercialization critical issues, and applications, Proceeding of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy (2007) 1926-1929.
    3.J. AbuShama, S. Johnston, T. Moriarty, G Teeter, K. Ramanathan and R. NOUFI, Properties of ZnO/CdS/CuInSe2 solar cells with improved performance, Progress in Photovoltaic: Research an Applications 12 (2004) 39-45.
    4.J. Schon, V. Alberts and E. Bucher, Structural and optical characterization of polycrystalline CuInSe2, Thin Solid Films 301 (1997)115-121.
    5.W. N. Shafarman, R. Klenk and B. E. McCandless, Device andmaterial characterization of Cu(InGa)Se2 solar cells with increasing band gap, Journal of Applied Physics 79 (1996) 7324-7328.
    6.P Jackson, D Hariskos, E Lotter, S Paetel, R Wuerz, R Menner,W Wischmann and M Powalla, New world record efficiency forCu(In,Ga)Se2 thin-film solar cells beyond 20%, 25th EU PVSECWCPEC-5, Valencia, Spain, (2010).
    7.US Department of Energy website. (http://www.nrel.gov/ncpv/)
    8. W. Gebicki, M. Igalson, W. Zajac and R. Trykozko, Growth and characterization of CuIn1-xAlxSe2 mixed crystals, Journal of Physics D: Applied Physics 23 (1990) 964-965.
    9.F. Itoh, O. Saitoh, M. Kita, H. Nagamori and H. Oike, Growthand characterization of CuIn1-xAlxSe2 by vacuum evaporation, Solar Energy Materials and Solar Cells 50 (1998) 119-125.
    10.M. W. Haimbodi, E. Gourmmelon, P. D. Paulson, R. W. Birkmire and W. N. Shafarman, CuIn1-xAlxSe2 thin films and devicesdeposited by multisource evaporation, Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, AK, USA(2000) 44-457.
    11.S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire and W. N. Shafarman, High-efficiency solar cells based on Cu(In,Al)Se2 thin films, Applied Physics Letters 81 (2002) 1350-1352.
    12.W. N. Shafarman, S. Marsillac, P. D. Paulson, M. W. Haimbodi, T. Minemoto and R. W. Birkmire, Material and device characterization of thin film Cu(In,Al)Se2 solar cells, Proceeding of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, Louisiana, USA (2002)519-522.
    13.Y. B. K. Reddy and V. S. Raja, Preparation and characterization of CuIn0.3Al0.7Se2 thin films for tandem solar cells, Solar Energy Materials and Solar Cells 90 (2006) 1656-1665.
    14.J. Yun, R. Chalapathy, S. Ahn, J. Lee, J. Song and K. Yoon, Growth
    of CuIn1-xAlxSe2 thin films by selenization of metallic precursors in Se vapor, Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion, Hawaii, USA (2006) 579-581.
    15. M. A. Green, Consolidation of thin-film photovoltaic technology:
    The coming decade of opportunity, Progress in Photovoltaics: Research and Applications 14 (2006) 383-392.
    16.P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire and W.
    N. Shafaman, CuIn1-xAlxSe2 thin films and solar cells, Journal of Applied Physics 91 (2002) 10153-10156.
    17.W. N. Shafaman, S. Marsillac, T. Minemoto, P. D. Paulson and R. Birkmire, Critical issues for Cu(In,Al)Se2 thin film solar cells, Proceedings of the IEEE 3nd Conference on Photovoltaic Energy Conversion, Osaka, Japan (2003) 2869-2873.
    18.S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire and W. N. Shafarman, High-efficiency solar cells based on Cu(In,Al)Se2 thin films, Applied Physics Letters 81 (2002) 1350-1352.
    19.William N. Shafarman and Lars Stolt University of Dlaware, Newark, DE, USA, Uppsala University, Uppsala, Sweden.
    20.Handbook of Photovoltaic Science and Engineering.
    21.R. Santbergen, J. M. Goud, M. Zeman, J. A. M. van Roosmalen, and R. J. C. van Zolingen, The AM1.5 absorption factor of thin-film solar cells, Sol. Energy Mater. Sol. Cells 94(5), (2010) 715-723.
    22.J. Scofield, A. Duda, D. Albin, B. Ballard and P. Predecki, Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films 260 (1995) 26-31.
    23.K.Orgassa, H. Schock and J. Werner, Alterative back contact materials for thin film Cu(In,Al)Se2 solar cells, Thin Solid Films 431-432 (2003) 387-391.
    24.R. W. Miles, K. M. Hynes and I. Forbes, Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues, Progress in Crystal Growth and Charaterization of Material 51 (2005) 1-42.
    25.U. Schmid and H. Seidel, Effect of substrate properties and thermal annealing on the reisistivity of molybdenum thin films, Thin Solid Films 489 (2005) 310-319.
    26.I. V. Malikov and G. M. Mikhailov, Electrical resistivity of epitaxial molybdenum films grown by laser ablation deposition, Journal of Applied Physics 82 (1997) 5555-5559.
    27.M. Archer and R. Hill, Clean electricity from photovoltaics Series on Photoconversion of Solar Energy Vol. 1 Imperial College Press (2001).
    28.N. B. Chaure, S. Bordas, A. P. Samantilleke, S. N. Chaure, J. Haigh and I. M. Dharmadasa, Investigation of electronic quality of chemical bath deposited cadmium sulphide layers used in thin film photovoltaic solar cells, Thin Solid Film 437 (2003) 10-17.
    29.B. –S. Moon, J.-H. Lee and H. Jung, Comparative studies of the properties of CdS films deposited on different substrates by R.F. sputtering, Thin Solid Films, EMSR 2005 – Proceedings of Symposium F on Thin Film and Nanostructured Materials for Photovoltaics – EMRS 2005- Symposium F 511-512 (2006) 299-303.
    30.V. Singh, B. P. Singh, T. P. Sharma and R. C. Tyagi, Effect of ambient hydrogen sulphide on the optical properties of evaporated cadmium sulphide films, Optical Materials 20 (2002) 171-175.
    31.A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann and A. N. Tiwari, Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells, Progress in Photovoltaics: Research and Applications 12 (2004) 93-111.
    32.J. Herrero, M. T. Gtierrez, C. Guillen, J. M. Dona, M. A. Martinez, A. M. Chaparo and R. Bayon, Photovoltaic windows by chemical bath deposition, Thin Solid Films 361-362 (2000) 28-33.
    33.F. Adurodija, Production of CuInSe2 photovoltaic devices for commercial application, PhD Thesis (1994) University of Northumbria, Newcastle upon Tyne, UK.
    34.L. C. Olsen, P. Eschbach and S. Kundu, Role of buffer layers in CIS-based solar cells, Proceeding of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, Louisiana, USA (2002)652-655.
    35.K. M. Hynes and J. Newham, An investigation of the environmental implications of the chemical bath deposition of CdS through environmental risk assessment, Proceedings of the 16th European Photovoltaic Solar Energy Conference, Glasgow, UK (2000) 2297-2300.
    36.S. Siebentritt, Alternative buffers for chalcopyrite solar cells, Solar Energy, Thin Film PV 77 (2004) 767-775.
    37.U. Zimmermann, M. Ruth and M. Edoff, Cadmium-free CIGS mini-modules with ALD-grown Zn(O,S)-based buffer layers, Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany (2006) 1831-1834.
    38.M. Kemell, M. Ritala and M. Leskela, Thin film deposition methods for CuInSe2 solar cells, Critical Reviews in Solid State and Materials Sciences 30 (2005) 1-31.
    39.U. Rau and M. Schmidt, Electronic properties of ZnO/CdS/Cu(In,Ga)Se2 solar cells – aspects of hetrojunction formation, Thin Solid Films 387 (2001) 141-146.
    40.E. Fortunato, D.Ginley, H. Hosono and D. C. Paine, Transparent Conducting Oxides for Photovoltaics, Material Research Society Bulletin 32 (2007) 242-247.
    41.I. Konovalov, Material requirements for CIS solar cells, Thin Solid Films, Proceedings of Symposium D on Thin Film and Nano-Structured Materials for Photovoltaics and E-MARS 2003 Spring Conference 451-452 (2004) 413-419.
    Chapter3:
    1.Paresh Suresh Nasikkar, The development of CuIn1-xAlxSe2 thin films for use in photovoltaic solar cells, NPAC (1998).
    2.B. Chapman Glow Discharge Processes-Sputtering and Plasma Etching A Wiley-Interscience Publication(1980).
    3.J. Vossen and W. Kern, eds. Thin film processes Academic Press Inc. (London) Ltd (1978).
    4.Jeong Chul Lee, Ki Hwan Kang, Seok Ki Kim, Kyung Hoon Yoon, I Jun Park and Jinsoo Song, RF sputter deposition of the high-quality intrinsic and n-type ZnO window layers for Cu(In,Ga)Se2 based solar cell applications.
    5.U. Malm, J. Malmström, C. Platzer-Björkman and L. Stolt, Determination of dominant recombination paths in Cu(In,Ga)Se2 thin-film solar cells with ALD-ZnO buffer, Thin Solid Films Volumes 480-481, 1 June 2005, Pages 208-212.
    6.Anant H. Jahagirdar, Ankur A. Kadam and Neelkanth G. Dhere, Role of i-ZnO in optimizing open circuit voltage of CIGS2 and CIGS thin film solar cells, Florida Solar Energy Center
    7.NCKU Micro-Nano Technology Center/Southern Region MEMS Center, Four-Point Probe.
    8. Northern Arizona University, Microanalysis SEM Instrumentation.
    9.D. Jonston, Thin Films of Copper Indium Disulphide and Zinc-based Buffer Layers for Application in Photovoltaic Devices, PhD Thesis (2005) University of Northumbria at Newcastle.
    10.Oxford Instrument Information sheet obtained from Robert Best-Research Technician in NPAC (AMRI), Northumbria University, UK.
    11.M. T. Postek, K. S. Howard, A. H. Johnson and K. McMichael Scanning electron microscopy- A student’s handbook Michael T. Postek, Jr. and Ladd Research Industries Inc. (1980).
    12.Presonal Communication with Robert Best-AMRI Technician, AMRI, Northumbria University, UK.
    13.Gardiner, D. J., Practical Raman spectroscopy, Springer-Verlag, ISBN 978-0-397-50254-0 (1989).
    14.Moxfyre, based on work of User:Pavlina2.0,Wikipedia, 2009.
    15.S. Munekawa, Technical Note “Application of X-ray diffraction techniques to the semiconductor field”, The Rigaku Journal 5 (1998) 31-34.
    16.B. D. Cullity Elements of X-ray Diffraction 2nd Edition Addison Wesley Publishing Company, Inc. (1978).
    17.Siemens D5000 Diffractometer Manual Order No. C79000-G3476-C137-073-12.
    18.N. R. Aghamalyan, E. A. Kafadaryan, R. K. Hovsepyan and S.I. Petrosyan, Absorption and reflection analysis of transparent conductive Ga-doped ZnO films, Semiconductor Science and Technology 20 (2005) 80-85.
    19.Scienctech Serving The Optical Spectroscopy Community For
    Over 23 Years (1987~2008).
    Chapter4:
    1.P. M. Salome, J. Malaquias, P.A. Femandes and A. F. da Cunha, Mo bilayer for thin film photovoltaics revistied, J. Phys. D: Appl. Phys. 43 (2010) 345501.
    2.Daniel Dwyer, Ingrid Repins, Harry Efstathiadis, Pradeep Haldar, Deposition of CuInAlSe2 films using co-sputtered precursor selenization, College of Nanoscale Science and Engineering, University of New York, Albany, NY 12203.
    3.B. Mhlungu, “Deposition of single-shase Cu(In,Ga)Se2 thin films”, Magister Scientiae Dissertation, 2004.
    4.F. Adurodija et al., “CuInSe2 Thin Films Prepared from High-Vapor Selenization of Co-sputtered Cu-In Precursor Layers”, J. Korean Phys. Soc. 32, 1998, pp. 87-92.
    5.S. Jost, “Real-time investigations of selenization reactions in the system Cu-In-Al-Se”, phys. stat. sol. (a) 203, 2006, pp. 2581-2587.
    6.J. Olejnicek, C. A. Kamler, S. A. Darveau, C. I. Exstrom, L.E. Slaymaker, A. R. Vandeventer, N. J. Ianno, R. J. Soukup, “Formation of CuIn1-xAlxSe2 thin films studied by Raman scattering”, Thin Solid Films 519, 5329-5334, 2011.
    7.K. Manickathai, S. Kasi Viswanathan, M. Alagar, Synthesis and characterization of CdO and CdS nanoparticles, Vol. 46, August 2008, pp. 561-564.
    8.Yi-Feng Huang, Effects of selenization process on properties and characheristics of CIAS thin film solar cells, NTHU Master thesis, 2011.
    Chapter5:
    1.S. Marsillac, P. D. Paulson, M.W. Haimbodi, R. W. Birkmire, and W. N. Shafarman, High-efficiency solar cells based on Cu(InAl)Se2 thin films, Applied physics letters, 81, no.7, 2002.
    2.Takao Hayashi, Takashi Minemoto, Tsutomu Araki, Hideyuki Takaura, Fabrication of Cu(In,Al)Se2 solar cells by three-stage evaporation process, Ritsumeikan University, 2007.
    3.Daniel Dwyer, Ingrid Repins, Harry Efstathiadis, Pradeep Haldar, Deposition of CuInAlSe2 films using co-sputtered precursors and selenization, Solar Energy Materials & Solar Cells 94, 598-605, 2010.
    4.Yen-Po Lin, Analysis of the role of Cu2Se in the fabrication of CuInAlSe2 solar cells, NTHU Master thesis, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE