研究生: |
黃士嘉 |
---|---|
論文名稱: |
一個倒流反應模型平衡解路徑上的實分歧和Hopf分歧問題探討 Numerical Investigation for Real Bifurcation and Hopf Bifurcation Problems of Steady-State Solution Paths of A Reverse Flow Reactor Model |
指導教授: | 簡國清教授 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
中文關鍵詞: | 實分歧點 、Hopf分歧點 、隱函數定理 、牛頓迭代法 、虛擬弧長延拓法 |
外文關鍵詞: | Bifurcation points, Hopf bifurcation points, Implicit function theorem, Newton's interative method, Pseudo-arclength continuation method |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非線性邊界值問題一直受到許多學者研究的主要問題, 不過大多只研究到實分歧理論, 鮮少去探討HOPF分歧理論而本文是以下面的模型採用實分歧理論和HOPF分歧理論, 來探討其模型平衡解路徑之實分歧點和HOPF分歧點並且探討過實分歧點和HOPF分歧點得各平衡解分支.
This thesis investigates the turning points, bifurcation points , Hopf bifurcation points and solution branches of steady-state solution ptahs of a reverse flow reactor model.
First, we use shooting method ,rung-kutta integral formula and Newton's interative method to calculate the turning points, bifurcation points and Hopf bifurcation points, We use implicit function theorem as the foundation to quote the numerical method of the Liapunov-Schmidt reduction method,tangent-predictor method, secant-predictor method, pseudo-arclength continuation method, to follow all solution branches from bifurcation points.
Finally, we change the parameters to find real bifurcation points, Hopf bifurcation points and bifurcation diagram of the model.
[1] Bellman, R. and Kalaba, R., Quasi-linearization and
Non-Linear Boundary Value Problems, American Elsevier,
New York, 1965.
[2] Collatz, E. A. and Levinson, N., Functional analysis and
Numerische Mathematik, Springer-Verlag, Berlin, 1964.
[3] Crandall, M.G., An Introduction to Constructive Aspects
of Bifurcation Theorem, Academic Press, pp.1-35, 1977.
[4] Crandall, M.G. and Rabinowitz, P. H., Mathematical
Theory of Bifurcation, Bifurcation Phenomena in
Mathematical Physics and Related Topics, NATO Advanced
Study Institute Series, 1979.
[5] Eusebius Doedel and Laurette S. Tuckerman, Numerical
Methods for Bifurcation Problems and Large-Scale
Dynamical Systems, Springer, 1999.
[6] Fox, L., The Numerical Solution of Two-Point Boundary
Problems in Ordinary Differential Equations, Clarendon
Press, Oxford, 1957.
[7] Goodman, T. R. and Lance, G. N., Math Tables and Other
Axis to Compute, X(54), 82, 1956.
[8] Keller, H.B., in “ Recent Advances in Numerical
Analysis”, Academic Press, New York, pp.73,1978.
[9] Keller, H.B., Numerical Solution of Bifurcation and
Nonlinear Eigenvalue Problems, Applications of
Bifurcation Theory Academic Press, pp.359-384, 1977.
[10] Keller, H.B., Lectures on Numerical Methods in
Bifurcation Problems, Springer-Verlag, 1987.
[11] Kubicek, M. and Mark, M., Computational Methods in
Bifurcation Theory and Dissipative Structures,
Springer-Verlag, New York Berlin Heidelberg Tokyo,
1983.
[12] Rheinboldt, W. C., Numerical Analysis of Parameterized
Nonlinear Equations, Wiley, New York.
[13] Wacker, H. (ed), Continuation Methods, Academic Press,
New York, 1978.
[14] 雷晋干,馬應南, 分歧問題的逼近理論與數值方法, 1992.