簡易檢索 / 詳目顯示

研究生: 廖述禹
論文名稱: 摻雜磁性雜質InAs量子通道的自旋過濾
Magnetic impurity doped InAs quantum wires as spin filters
指導教授: 吳玉書
口試委員: 朱仲夏
鄭舜仁
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 42
中文關鍵詞: 自旋軌道耦合InAs 量子通道磁性雜質自旋過濾
外文關鍵詞: spin-orbit coupling, InAs quantum wires, magnetic impurity, spin filtering
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    在這篇論文中,我們對於准一維半導體系統中的自旋傳輸做了理論的研究及數值的模擬,能夠實現一個的以自旋過濾的方式產生自旋極化的原件是我們的主要目的。我們在准一維半導體系統中,考慮了Rashba自旋軌道耦合的效應、次能帶的耦合及通道中摻雜磁性雜質的影響並研究在這樣的准一維系統中的自旋傳輸性質。

    我們設定InAs准一維通道的側向寬度大約是40nm,並透過閘極電壓在通道上加入一個位障/位能井,位障/位能井長度可以決定在100nm至600nm的範圍左右,而通道中磁性雜質的影響包含兩個部分:(1)磁性部分,代表了由磁性雜質磁矩所造成的部分,會在散射的過程中影響電子的自旋並造成自旋的翻轉。(2)非磁性部分,代表了由磁性雜質的帶電所造成的部分,吸引、排斥或中性都是可能的情形,而在散射的過程中並不影響電子的自旋。我們發展一套理論以計算電子在通過通道時的自旋傳輸並呈現出計算的數據結果,最後,我們發現磁性雜質的磁矩方向及帶電的性質將是影響自旋過濾的關鍵,而藉由調控閘極電壓改變位障/位能井的強度的方法,提供了一個直接且有效率的方法將自旋過濾的效果達到最佳化。


    Abstract

    This thesis presents a theoretical study and numerical simulation of spin transport in a quasi 1D semiconductor system. The main purpose of this thesis is to achieve a spin filtering device to generate spin polarization. Specifically, we investigate the spin transport under the effects of both the Rashba spin-orbit and the subband coupling as well as under the influence of a magnetic impurity in the wire.

    In this thesis, we examine a quasi-one dimensional InAs wire with wire width about 40nm. A potential barrier/ well is introduced in the wire by using a gate voltage, with the length of barrier/ well width varying from 100 to 600 nm. The magnetic impurity includes two parts: (i) the spin-flip part, meaning the impurity magnetic moment part, which can flip the electron spin during scattering, and (ii) the non-flip part, meaning the coulomb part, which can be attractive, repulsive or neutral, and conserves the electron spin during scattering. A theory is developed to calculate the spin-dependent electron transmission through the wire, and numerical data are presented. The direction of the magnetic moment and the sign of the non-flip part are found to be critical to the spin filtering. The barrier height / well depth can be tuned via the electric gate, providing a direct and efficient means to optimize the filtering.

    目錄 1. 概論 1 1.1 動機 2 1.2 半導體中的自旋軌道偶合/Rashba效應 3 1.2.1 結構反轉的不對稱:Rashba效應 4 1.2.2 塊材反轉的不對稱:Dresselhaus效應 5 1.3 二維電子氣及准一維系統 6 1.4 InAs量子井 7 2. 存在Rashba效應的准一維半導體通道 2.1 在二態模型下的哈密頓量 10 2.2 次能帶的混合 13 2.3 自旋過濾器 17 2.3.1 Streda和Seba的自旋過濾器 17 2.3.2 Birkholz和Meden的自旋過濾器 20 2.4 自旋電流 21 3. 摻雜δ雜質半導體准一維通道的傳輸性質 3.1 雜質散射與對應的哈密頓量 23 3.2 准一維通道中δ雜質的自旋傳輸 25 3.2.1 δ雜質強度及方向的影響 26 3.2.2 改變位障/位能井寬度及δ雜質位置的影響 34 4. 結論 38 附錄 A. β項Rashba效應的估計 39 B. 自旋電流的推導 39 參考資料 42

    參考資料

    [1]S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
    [2]P. Strěda and P. Sěba, Phys. Rev. Lett. 90, 256601 (2003).
    [3]A. V. Moroz and C. H. W. Barnes, Phys. Rev. B. 60, 14272 (1999).
    [4]M. Governale and U. Zülicke, Phys. Rev. B. 66, 073311 (2002).
    [5]S. Debald and B. Kramer, Phys. Rev. B. 71, 115322 (2005).
    [6]J. Luo, H. Munekata, F.F. Fang, and P. J. Stiles, Phys. Rev. B. 38, 10142 (1988); Phys. Rev. B. 41, 7685 (1990).
    [7]J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).
    [8]G. Lommer, F. Malcher, and U. Rössler, Phys. Rev. Lett. 60, 728 (1988).
    [9]T.Y. Lee, H.C. Koo, K.H. Kim, H.-J. Kim, J. Chang, and S.-H. Han, IEEE. TMAG. 2383-2385 (2009).
    [10]D. Grundler, Phys. Rev. Lett. 84, 6074 (2000).
    [11]J. E. Birkholz and V. Meden, J. Phys.: Condens. Matter 20, 085226 (2008).
    [12]F. G. Monzon and M. L. Roukes, J. Magn. Magn. Mater. 198/199, 632 (1999).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE