簡易檢索 / 詳目顯示

研究生: 楊雯婷
Yang, Wen-Ting
論文名稱: Cadherins mediate cell sorting
Cadherins調控細胞分離現象之研究
指導教授: 徐瑞洲
Hsu, Jui-Chou
口試委員: 陳令儀
Chen, Lin-Yi
范聖興
Fan, Seng-Sheen
徐瑞洲
Hsu, Jui-Chou
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 46
中文關鍵詞: 鈣黏著分子細胞分離
外文關鍵詞: cadherin, cell sorting
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cell sorting is a morphogenetic processthat cell populations with different identities may segregate from each other. Being a major cellular adhesion molecule on adherens junction, Drosophila epithelial cadherin (DE-cadherin), the homologue of E-cadherin in Drosophila, can mediate cell-cell adhesion through the extracellular domain that interacts with other cadherins and through the intracellular domain that forms the cadherin-catenin complex. Alterations in DE-cadherin expression levels may lead to cell sorting by changing the adhesivity. On the purpose to investigate how cadherins mediate cell sorting, I overexpressed cadherins, the truncated forms and the chimera cadherins under the control of GAL4-UAS system in Drosophila wing discs and subsequently observed the phenotypes in a macro view. The results in this study revealed that a full-length of cadherin was required for the mediation of cell sorting behavior. Both the extracellular domain and the intracellular domain of a cadherin were required, however, not sufficient while acted alone, for cell sorting. Signals from cell-cell contact had to transmit to the cytoskeleton through interactions of the cadherin-catenin complex, cooperatively, to mediate the cell sorting behavior of cell populations.


    細胞分離(cell sorting)是一種形態生成的過程當中常見的現象:性質不相同的細胞會傾向與彼此分離;而使得性質接近或相同的細胞聚集在一起。果蠅的上皮鈣黏著分子(Drosophila epithelial cadherin, DE-cadherin)是細胞黏著分子(cellular adhesion molecule)的一種,可以透過其細胞外的結構與其他上皮鈣黏著分子進行順式或反式的結合,並同時藉由其細胞內結構與連環蛋白(catenin)形成複合物,以調控細胞與細胞之間的連結。改變上皮鈣黏著分子的表現量會影響細胞間的黏著作用,因而導致了細胞分離現象的產生。為了瞭解上皮鈣黏著分子是如何調控細胞分離的現象,在這個研究當中我利用了GAL4-UAS system將全長、截短以及嵌合等形態的鈣黏著分子大量表現在果蠅的翅碟(wing disc)上,並且以巨觀的角度探討鈣黏著分子對於細胞分離現象的調控。實驗結果顯示,只有全長的鈣黏著分子得以調控細胞分離的現象。單就細胞外結構或是細胞內結構的表現量改變是不足以使細胞群分離開來的,兩者必須共同作用,使得細胞與細胞接觸時的訊息藉由鈣黏著分子與連環蛋白所形成的複合物進一步地傳遞至細胞骨架(cytoskeleton),以調控細胞分離的行為與現象。

    Abstract 1 Introduction….……………………………………….........................………- 1 - 2 Methods and Materials……………………………………………………....- 3 - 2.1 Drosophila stocks………………………………………………………..- 3 - 2.2 Molecular cloning...……………………………………………………..- 3 - 2.2.1 pUAST-DEcadΔcyto-DNcadintra-HA (DEDN-cadherin) …………………………………………………..- 3 - 2.3 Histochemistry…………………………………………………………..- 4 - 2.4 TUNEL assay……………………………………………………………- 5 - 2.5 Cuticle specimen preparation…………………………..………………..- 5 - 3 Results………………………………………………………………………....- 7 - 3.1 Alteration in DE-cadherin expression level led to deformation of wing imaginal discs……………………………………………………..……..- 8 - 3.1.1 Overexpression of DE-cadherin………………………...…………..- 8 - 3.1.2 Down-regulation of DE-cadherin…………………………………...- 9 - 3.2 Ectopic expression of DE-cadherin ECD and DE-cadherin ICD had no effects on morphology of wing imaginal discs………………………...- 10 - 3.3 Ectopic expression of DN-cadherin led to deformation of wing imaginal discs……………………………………………………………..……....- 11- 3.4 Ectopic expression of DEcadΔcyto-DNcadintra-HA led to deformation of wing imaginal discs………………………………………………………......- 12 - 3.5 Ectopic expression of DE-cadherin Δβ had no effects on morphology of wing imaginal discs………………………………………………….....- 14 - 3.6 Ectopic expression of DE-cad Δcyto-α-catenin had no effects on morphology of wing imaginal discs………………………………………………....- 15 - 3.7 Summary………………………………..……………………………....- 16- 4 Discussion………………………………………………………………........- 17 - 4.1 ECDs and ICDs of cadherins cooperatively mediate cell sorting……...- 17 - 4.2 Overexpression of cadherin ICDs leads to the notch phenotype in wing blades independent of cell sorting……………………………………...- 19 - 4.3 Cells ectopically expressing cadherins are restricted in a small area…..- 21 - 5 Figures…………………………………………………………….……........- 25 - 5.1 Figure 1. Wild type, truncated form and chimeras of cadherins used in this study……………………………………………………………............- 25 - 5.2 Figure 2. The expression patterns of wingless (wg) and different Gal4 lines used in this study……………………………………………………….- 26 - 5.3 Figure 3. Overexpression of DE-cadherin leads to deformation of wing discs…………………………………………………………….............- 27 - 5.4 Figure 4. Overexpression of DE-cadherin has no significant correlation with cell death……………………………………………….................- 28 - 5.5 Figure 5. RNA interference of DE-cadherin leads to deformation of wing discs……………………………………………….................................- 29 - 5.6 Figure 6. Ectopic expression of DE-cadherin ECD and DE-cadherin ICD does not affect the morphology of wing discs…………........................- 30 - 5.7 Figure 7. Phenotypes in notum and wing blade resulted from ectopic expression of DE-cadherin ICD, DN-cadherin and DEcadΔcyto-DNcadintra-HA…………………….......................................- 32 - 5.8 Figure 8. Ectopic expression of DN-cadherin leads to deformation of wing discs…………………….........................................................................- 34 - 5.9 Figure 9. Ectopic expression of DEcadΔcyto-DNcadintra-HA leads to deformation of wing discs…………………….......................................- 36 - 5.10 Figure 10. DEDN-cad-expressing cells are expelled from the region of wing pouches……………………...........................................................- 38 - 5.11 Figure 11. Ectopic expression of DE-cadherin Δβ does not affect the morphology of wing discs.......................................................................- 39 - 5.12 Figure 12. Ectopic expression of DE-cadherin-α-catenin does not affect the morphology of wing discs.......................................................................- 40 - 5.13 Figure 13. Ectopic expression of DE-cadherin-α-catenin does not affect the distribution of F-actin..............................................................................- 41 - 6 References........................................................................................................- 42 -

    Adams, C.L., Nelson, W.J. and Smith, S.J. (1996) Quantitative analysis of cadherin-catenin-actin reorganization during development of cell-cell adhesion. J. Cell Biol. 135, 1899–1911.
    Angres, B., Barth, A. and Nelson, W. J. (1996) Mechanism for transition from initial to stable cell-cell adhesion: kinetic analysis of E-cadherin-mediated adhesion using a quantitative adhesion assay. J. Cell Biol. 134, 549–557.
    Baumgartner, W., Hinterdorfer, P., Ness, W., Raab, A., Vestweber, D., Schindler, H. and Drenckhahn, D. (2000) Cadherin interaction probed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 97, 4005–4010
    Brieher, W.M., Yap, A.S. and Gumbiner, B.M. (1996) Lateral dimerization is required for the homophilic binding activity of C-cadherin. J. Cell Biol. 135, 487–496
    Bronner-Fraser, M., Wolf, J.J. and Murray, B.A. (1992) Effects of antibodies against N-cadherin and N-CAM on the cranial neural crest and neural tube. Dev. Biol. 153, 291–301
    Calleja, M., Moreno, E., Pelaz, S. and Morata, G. (1996) Visualization of gene expression in living adult. Drosophila. Science 274, 252-255
    Chitaev, N.A. and Troyanovsky, S.M. (1998) Adhesive but not lateral E-cadherin complexes require calcium and catenins for their formation. J. Cell Biol. 142, 837–846
    Clevers, H. (2006) Wnt/β-catenin signaling in development and disease. Cell 127, 469-480
    Cox, R.T., Pai, L.M., Kirkpatrick, C., Stein, J. and Peifer, M. (1999) Roles of the C terminus of Armadillo in wingless signaling in Drosophila. Genetics 153, 319–332
    den Elzen, N., Buttery, C.V., Maddugoda, M.P., Ren, G. and Yap, A.S. (2009) Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Molecular Biology of the Cell 20, 3740–3750
    Detrick, R.J., Dickey, D. and Kintner, C.R. (1990) The effects of N-cadherin misexpression on morphogenesis in Xenopus embryos. Neuron 4, 493–506
    Drees, F., Pokutta, S., Yamada, S., Nelson, W.J., and Weis, W.I. (2005) α-Catenin is a molecular switch that binds E-cadherin/β-catenin and regulates actin-filament assembly. Cell 123, 903–915.
    Duguay, D., Foty, R.A. and Steinberg, M.S. (2003) Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev. Biol. 253, 309–323
    Dumstrei, K., Wang, F., Shy, D., Tepass, U., and Hartenstein, V. (2002) Interaction between EGFR signaling and DE-cadherin during nervous system morphogenesis. Development 129, 3983–3994
    Foty, R.A. and Steinberg, M.S. (2004) Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev. Biol. 48, 397-409
    Foty, R.A. and Steinberg, M.S. (2005) The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255– 263
    Fujimori, T., Miyatani, S. and Takeichi, M. (1990) Ectopic expression of N-cadherin perturbs histogenesis in Xenopus embryos. Development 110, 97–104
    Godt, D., and Tepass, U. (1998) Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395, 387–391
    Gomez-Skarmeta, J.L., Diez del Corral, R., de la Calle-Mustienes, E., Ferré-Marcó, D. and Modolell, J. (1996) Araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85, 95-105
    González-Reyes, A., and St Johnston, D. (1998) The Drosophila AP axis is polarized by the cadherin-mediated positioning of the oocyte. Development 125, 3635–3644
    Halbleib, J.M. and Nelson, W.J. (2006) Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20, 3199-3214
    Harris, T.J.C. and Tepass, U. (2010) Adherens junctions: from molecules to morphogenesis. Nature 11, 502-514
    Hayashi, T. and Carthew, R.W. (2004) Surface mechanics mediate pattern formation in the developing retina. Nature 431, 647–652
    Hazan, R. B., Qiao, R., Keren, R., Badano, I. and Suyama, K. (2004) Cadherin switch in tumor progression. Ann. N. Y. Acad. Sci. 1014, 155-163
    Holtfreter, J. (1939) Gewebeaffinit7t, ein Mittel der embryonal Formbildung. Arch. Exp. Zellforsch. Besonders Gewebezuecht. 23, 169-209
    Huber, A.H. and Weis, W.I. (2001) The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391–402
    Landsberg, K.P., Farhadifar, R., Ranft, J., Umetsu, D., Widmann, T.J., Bittig, T., Said, A., Jülicher, F. and Dahmann, C. (2009) Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr. Biol. 19, 1950–1955
    Le Borgne, R., BellaÏche, Y. and Schweisguth, F. (2002) Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr. Biol. 12, 95–104
    Lee, M., Lee, S., Zadeh, A. D. and Kolodziej, P. A. (2003) Distinct sites in E-cadherin regulate different steps in Drosophila tracheal tube fusion. Development 130, 5989-5999
    Li, W. and Baker, N.E. (2007) Engulfment Is Required for Cell Competition. Cell 129, 1215-1225
    Li, W., Kale, A. and Baker, N.E. (2009) Oriented cell division as a response to cell death and cell competition. Curr. Biol. 19, 1821-1826
    Lien, W.H., Klezovitch, O., Fernandez, T.E., Delrow, J. and Vasioukhin, V. (2006) αE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science 311,1609-1612
    Lilien, J. and Balsamo, J. (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of β-catenin. Curr. Opin. Cell Biol. 17, 459–465
    Lu, B., Roegiers, F., Jan, L.Y. and Jan, Y.N. (2001) Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409, 522–525
    Martín, F.A., Herrera, S.C. and Morata, G. (2009) Cell competition, growth and size control in the Drosophila wing imaginal disc. Development 136, 3747-3756
    Martin, A.C. and Wieschaus, E.F. (2010) Tensions divide. Nat. Cell Biol. 12, 5-7
    Matsunaga, M., Hatta, K. and Takeichi, M. (1988) Role of N-cadherin cell adhesion molecules in the histogenesis of neural retina. Neuron 1, 289–295
    Mirkovic, I. and Mlodzik, M. (2006) Cooperative activities of Drosophila DE-cadherin and DN-cadherin regulate the cell motility process of ommatidial rotation. Development 133, 3283-3293
    Morata, G. and Martín, F.A. (2007) Cell competition: the embrace of death. Dev. Cell 13, 1-2
    Moreno, E., Yan, M. and Basler, K. (2002) Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr. Biol. 12, 1263-1268
    Nelson, W.J. and Nusse, R. (2004) Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483-1487
    Oda, H. and Tsukita, S. (1999) Nonchordate classic cadherins have a structurally and functionally unique domain that is absent from chordate classic cadherins. Dev. Biol. 216, 406-422
    Pacquelet, A., Lin, L. and Rorth, P. (2003) Binding site for p120/δ-catenin is not required for Drosophila E-cadherin function in vivo. J. Cell Biol. 160, 313-319
    Pugacheva, E.N., Roegiers, F. and Golemis, E.A. (2006) Interdependence of cell attachment and cell cycle signaling. Curr. Opin. Cell Biol. 18,507–515
    Sanson, B., White, P. and Vincent, J.P. (1996) Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature 383, 627-630
    Song, X. and Xie, T. (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc. Natl. Acad. Sci. USA 99, 14813–14818
    Steinberg, M.S. (1963) Reconstruction of tissues by dissociated cells. Science 141, 401-408
    Steinberg, M.S. and Takeichi, M. (1994) Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl. Acad. Sci. USA 91, 206– 209.
    Steinberg, M.S. (2007) Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17, 281–286
    Takeichi, M. (1988) The cadherins: cell–cell adhesion molecules controlling animal morphogenesis. Development 102, 639–655
    Takeichi, M. (1990) Cadherins: a molecular family important in selective cell–cell adhesion. Annu. Rev. Biochem. 59, 237– 252.
    Ting, C.Y., Yonekura, S., Chung, P., Hsu, S.N., Robertson, H.M., Chiba, A. and Lee, C.H. (2004) Drosophila N-cadherin functions in the first stage of the two-stage layer-selection process of R7 photoreceptor afferents. Development 132, 953-963
    Townes, P.L. and Holtfreter, J. (1955) Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53-120.
    Wang, F., Dumstrei, K., Haag, T. and Hartenstein, V. (2004) The role of DE-cadherin during cellularization, germ layer formation and early neurogenesis in the Drosophila embryo. Dev. Biol. 270, 350–363
    Wei, S.Y., Escudero, L.M., Yu, F., Chang, L.H., Chen, L.Y., Ho, Y.H., Lin, C.M., Chou, C.S., Chia, W., Modolell, J. and Hsu, J.C. (2005) Echinoid is a component of adherens junctions that cooperates with DE-cadherin to mediate cell adhesion. Dev. Cell 8, 493–504
    Yamada, S., Pokutta, S., Drees, F., Weis, W.I. and Nelson, W.J. (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123, 889–901
    Yap, A. S. and Kovacs, E. M. (2003) Direct cadherin-activated cell signaling: a view from the plasma membrane. J. Cell Biol. 160, 11-16
    Yonekura, S., Ting, C.Y., Neves, G., Hung, K., Hsu, S.N., Chiba, A., Chess, A. and Lee, C.H. (2006) The variable transmembrane domain of Drosophila N-cadherin regulates adhesive activity. Mol. Cell. Biol. 26, 6598–6608.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE