簡易檢索 / 詳目顯示

研究生: 劉紜蓁
Liu, Yun-Zhen
論文名稱: 鎳鋅比含量對於NiCuZn ferrite在束縛燒結下緻密行為之影響
Effects of Ni/Zn ratio on constrained sintering of NiCuZn ferrites
指導教授: 簡朝和
Jean, Jau-Ho
口試委員: 林樹均
Lin, Su-Jien
李奕賢
Lee, Yi-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 50
中文關鍵詞: NiCuZn ferrite束縛燒結鎳鋅比含量
外文關鍵詞: NiCuZn ferrite, constrained sintering, Ni/Zn ratio
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在探討鎳鋅比含量對於NiCuZn ferrite在束縛燒結下緻密行為之影響與顯微結構發展,並探討束縛燒結其緻密延遲之現象。在相同的燒結條件下,不論是在自由燒結或束縛燒結,鎳含量多的ferrite其緻密度較低。在束縛燒結的情況下,束縛層的存在會延遲緻密行為,在X-Y方向產生平面張應力,抵銷部分的燒結驅動力,故平面張應力越大則代表越不容易緻密,根據構成方程式計算,鎳含量多的ferrite其張應力較大,證實了鎳含量多的ferrite在相同燒結條件下,相較於鎳含量較少的ferrite其緻密度較差。材料在自由燒結可緻密的條件下,因束縛層存在的關係緻密行為發生延遲,具有較低的緻密度和較慢的緻密速率,為了解決束縛燒結下緻密度低的問題,在Z軸方向施加壓應力來提升緻密度,使束縛燒結具有與自由燒結的相同緻密速率,而較多鎳含量的ferrite其緻密行為較慢,因此所需之壓應力較大,其量測值與利用構成方程式計算之理論值相符,因此可利用等向性構成方程式分析其緻密行為與應力變化。


    Effects of Ni/Zn ratio on constrained sintering of NiCuZn ferrites have been investigated. Poorer and slower densification is observed in the samples with a higher NiO content in NiCuZn ferrite under free and constrained sintering. The samples with a higher NiO content have the larger tensile stress and the required uniaxial stress. The above results are caused by more NiO content, which has the slower densification behavior. It requires the more sintering force and larger uniaxial stress to be densified. The densification behavior and stress development during constrained sintering of ferrite system are calculated by using an isotropic model. Insignificant change in densification mechanism and isotropic microstructure develop under free and constrained sintering.

    一、前言-1 1.1 積層陶瓷製程-1 1.2 束縛燒結技術-2 1.3 束縛燒結面臨的問題-3 1.4 研究背景與動機-9 二、實驗方法-11 2.1 試片製備-11 2.2 緻密度與收縮性質量測-11 2.3 顯微結構觀察與統計分析-12 三、結果與討論-13 3.1 束縛燒結-13 3.1.1 緻密行為-13 3.1.2 平面張應力-13 3.1.3 緻密機制分析-15 3.1.4 晶粒方向分析-16 3.1.5 外加應力-16 3.1.6 燒結行為分析-17 3.1.7 等向性模型-22 四、結論-24 五、參考文獻-25

    1. Scrantom CQ, Lawson JC. LTCC technology: where we are and where we're going. II. IEEE MTT-S1999.p. 193-200

    2. Lei CD, Jean JH. Effect of crystallization on the stress required for constrained sintering of CaO–B2O3–SiO2 glass–ceramics. J. Am. Ceram. Soc. 2005;88(3):599-603

    3. Mikeska K, Jensen R. Pressure-Assisted Sintering of Multilayer Packages. Ceram. Trans. 1989;15:629-50

    4. Vitriol WA, Brown RL. Process for fabricating dimensionally stable interconnect boards. US Patent 4,656,552. 1987

    5. Huang CC, Jean JH. Stress required for constrained sintering of a ceramic‐filled glass composite. J. Am. Ceram. Soc. 2004;87(8):1454-58

    6. Lin YC, Jean JH. Constrained densification kinetics of alumina/borosilicate glass+ alumina/alumina sandwich structure. J. Am. Ceram. Soc. 2002;85(1):150-54

    7. Garino TJ, Bowen HK. Deposition and sintering of particle films on a rigid substrate. J. Am. Ceram. Soc. 1987;70(11):315‐17

    8. Garino TJ, Bowen HK. Kinetics of constrained‐film sintering. J. Am. Ceram. Soc. 1990;73(2):251-57

    9. Geller B, Thaler B, Fathy A, Liberatore M, Chen H, Ayers G, Pendrick V, Narayan Y. LTCC-M: An enabling technology for high performance multilayer RF systems. J. Microwave. 1999;42(7):64-70

    10. Mikeska KR, Schaefer DT. Method for reducing shrinkage during firing of ceramic bodies. US Patent 5,454,741. 1994

    11. Tzeng SY, Jean JH. Stress development during constrained sintering of alumina/glass/alumina sandwich structure. J. Am. Ceram. Soc. 2002;85(2):335-40

    12. Scherer GW, Garino T. Viscous sintering on a rigid substrate. J. Am. Ceram. Soc. 1985;68(4):216-20

    13. Guillon O, Weiler L, Rödel J. Anisotropic microstructural development during the constrained sintering of dip‐coated alumina thin films. J. Am. Ceram. Soc. 2007;90(5):1394-400

    14. Rabe T, Schiller WA, Hochheimer T, Modes C, Kipka A. Zero shrinkage of LTCC by self‐constrained sintering. Int. J. Appl. Ceram. Technol. 2005;2(5):374-82

    15. Bordia RK, Zuo R, Guillon O, Salamone SM, Rödel J. Anisotropic constitutive laws for sintering bodies. Acta Mater. 2006;54(1):111-18

    16. Guillon O, Aulbach E, Rödel J, Bordia RK. Constrained sintering of alumina thin films: comparison between experiment and modeling. J. Am. Ceram. Soc. 2007;90(6):1733-37

    17. Lin YC, Jean JH. Constrained sintering of silver circuit paste. J. Am. Ceram. Soc. 2004;87(2):187-91

    18. Green DJ, Guillon O, Rödel J. Constrained sintering: A delicate balance of scales. J. Eur. Ceram. Soc. 2008;28(7):1451-66

    19. Choe J, Calat JN, Lu GQ. Constrained-film sintering of a gold circuit paste. J. Mater. Res. Technol. 1995;10(4):986-94

    20. Ollagnier JB, Guillon O, Rödel J. Effect of anisotropic microstructure on the viscous properties of an LTCC material. J. Am. Ceram. Soc. 2007;90(12):3846-51

    21. Chang JC, Jean JH, Hung YY. The effect of applied stress on the densification of a low‐temperature cofired ceramic‐filled glass system under constrained sintering. J. Am. Ceram. Soc. 2009;92(9):1946-50

    22. Guillon O, Krauß S, Rödel J. Influence of thickness on the constrained sintering of alumina films. J. Eur. Ceram. Soc. 2007;27(7):2623-27

    23. Atkinson A, Kim JS, Rudkin R, Taub S, Wang X. Stress induced by constrained sintering of 3YSZ films measured by substrate creep. J. Am. Ceram. Soc. 2011;94(3):717-24

    24. Zuo R, Aulbach E, Rödel J. Viscous Poisson's coefficient determined by discontinuous hot forging. J. Mater. Res. 2003;18(9):2170-76

    25. Lu GQ, Sutterlin RC, Gupta TK. Effect of mismatched sintering kinetics on camber in a low‐temperature cofired ceramic package. J. Am. Ceram. Soc. 1993;76(8):1907-14

    26. Wang X, Atkinson A. Microstructure evolution in thin zirconia films: Experimental observation and modelling. Acta Mater. 2011;59(6):2514-25

    27. Bordia R, Raj R. Sintering behavior of ceramic films constrained by a rigid substrate. J. Am. Ceram. Soc. 1985;68(6):287-92

    28. Bordia R, Scherer G. Sintering of composites: A critique of the available analyses. Ceramic Powder Science II. Transactions Westerville, Oh. 1988;1:872-86

    29. Ollagnier JB, Green DJ, Guillon O, Rödel J. Constrained sintering of a glass ceramic composite: II. Symmetric laminate. J. Am. Ceram. Soc. 2009;92(12):2900-06

    30. Amaral L, Jamin C, Senos AM, Vilarinho PM, Guillon O. Constrained sintering of BaLa4Ti4O15 thick films: Pore and grain anisotropy. J. Eur. Ceram. Soc. 2013;33(10):1801-08

    31. Bernard D, Guillon O, Combaret N, Plougonven E. Constrained sintering of glass films: Microstructure evolution assessed through synchrotron computed microtomography. Acta Mater. 2011;59(16):6228-38

    32. Zuo R, Aulbach E, Bordia RK, Rödel J. Critical evaluation of hot forging experiments: case study in alumina. J. Am. Ceram. Soc. 2003;86(7):1099-105

    33. Martin C, Bordia R. The effect of a substrate on the sintering of constrained films. Acta Mater. 2009;57(2):549-58

    34. Bordia RK, Scherer GW. On constrained sintering—I. Constitutive model for a sintering body. Acta Metall. 1988;36(9):2393-97

    35. Bordia RK, Scherer GW. On constrained sintering—II. Comparison of constitutive models. Acta Metall. 1988;36(9):2399-409

    36. Bordia RK, Scherer GW. On constrained sintering—III. Rigid inclusions. Acta Metall. 1988;36(9):2411-16

    37. Cai PZ, Messing GL, Green DJ. Determination of the mechanical response of sintering compacts by cyclic loading dilatometry. J. Am. Ceram. Soc. 1997;80(2):445-52

    38. Mohanram A, Messing GL, Green DJ. Measurement of viscosity of densifying glass‐based systems by isothermal cyclic loading dilatometry. J. Am. Ceram. Soc. 2004;87(2):192-96

    39. Xie RJ, Zuo R, Aulbach E, Mackens U, Hirosaki N, Rödel J. Uniaxial viscosity of low-temperature cofired ceramic (LTCC) powder compacts determined by loading dilatometry. J. Eur. Ceram. Soc. 2005;25(4):417-24

    40. Ollagnier JB, Guillon O, Rödel J. Viscosity of LTCC determined by discontinuous sinter‐forging. Int. J. Appl. Ceram. Technol. 2006;3(6):437-41

    41. Zuo R, Rödel J. Temperature dependence of constitutive behaviour for solid-state sintering of alumina. Acta Mater. 2004;52(10):3059-67

    42. Imanaka Y. Multilayered low temperature cofired ceramics (LTCC) technology. New York: Springer Science & Business Media;2006. p. 6

    QR CODE