研究生: |
廖冠曄 Liao, Guan-Ye |
---|---|
論文名稱: |
表面電漿子奈米結構修飾於ZIF-8衍生之奈米多孔碳應用於表面增強拉曼光譜 (SERS) Plasmonic nanostructures decorated ZIF-8 derived nanoporous carbon for SERS detection |
指導教授: |
劉耕谷
Liu, Keng-Ku |
口試委員: |
陳之碩
Chen, Chi-Shuo 董瑞安 Doong, Ruey-An 林芳新 Lin, Fang-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 表面增強拉曼散射 、沸石咪唑酯有機框架 、表面電漿子 、化學感測器 |
外文關鍵詞: | surface-enhanced Raman scattering, zeolitic imidazolate framework-8, plasmonics, chemical sensors |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
快速識別疾病標誌物,對於疾病診斷、癒後和治療監測至關重要,表面增強拉曼散射是一種靈敏檢測光譜分析技術,具有識別分析物的能力,由於其靈敏度足以檢測極低濃度的分子和迅速的分析能力,廣泛應用各個感測技術領域。於目前研究中,開發一種具有快速識別及高穩定性的SERS基材仍然是一個艱難的挑戰。在本實驗中,將使用表面電漿子奈米結構修飾經過高溫熱處理沸石咪唑酯有機框架。多孔的棒狀金銀奈米核殼結構,是由於棒狀金銀奈米核殼結構經由化學電置換,使紅外線可見光波長調整至所使用的拉曼光譜的氦氖波長 (632.8 nm),放大並顯著增強拉曼探針分子的檢測訊號。
最後,因為表面電漿子奈米結構所修飾的ZIF-8衍生之奈米多孔碳,對拉曼探針分子具有好的檢測效率,因此,本實驗的拉曼檢測平台擁有巨大的潛力,相信未來可應用於許多的研究,如:生醫感測,食品安全等等。
Disease identification and prognosis are vital for disease assessment, prognosis, and treatment monitoring. The sensitive and rapid analysis capabilities of surface-enhanced Raman scattering (SERS) are widely used in various sensing technologies to identify analytes due to its ability to detect analytes at very low concentrations. In spite of this, developing a SERS substrate with fast recognition and stability remains a challenge. The objective of this work is to carbonize the zeolitic imidazolate framework-8 (ZIF-8) nanostructures through the use of a high temperature annealing process and modify the porous AuNR@Ag nanoparticles on the surface of nanoporous carbon nanostructures in order to obtain high SERS signals. The excitation wavelength of porous AuNR@Ag is adjusted to the laser excitation wavelength (632.8 nm) of the Raman spectroscope which leads to amplification and significant enhancement of the Raman signal. Consequently, the ZIF-8 derived nanoporous carbon decorated with plasmonic nanostructures has excellent Raman detecting efficiency. Therefore, our Raman sensing platform has huge potential and can be used for biomedical sensing, food safety and various research fields in the future.
1. Lee, C. H.; Tian, L.; Singamaneni, S., Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces. ACS Applied Materials & Interfaces 2010, 2 (12), 3429-3435.
2. Lee, C. H.; Hankus, M. E.; Tian, L.; Pellegrino, P. M.; Singamaneni, S., Highly Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Plasmonic Nanostructures. Analytical Chemistry 2011, 83 (23), 8953-8958.
3. Tian, L.; Liu, K.-K.; Morrissey, J. J.; Gandra, N.; Kharasch, E. D.; Singamaneni, S., Gold nanocages with built-in artificial antibodies for label-free plasmonic biosensing. Journal of Materials Chemistry B 2014, 2 (2), 167-170.
4. Ko, H.; Singamaneni, S.; Tsukruk, V. V., Nanostructured Surfaces and Assemblies as SERS Media. Small 2008, 4 (10), 1576-1599.
5. Er, E.; Sánchez-Iglesias, A.; Silvestri, A.; Arnaiz, B.; Liz-Marzán, L. M.; Prato, M.; Criado, A., Metal Nanoparticles/MoS2 Surface-Enhanced Raman Scattering-Based Sandwich Immunoassay for α-Fetoprotein Detection. ACS Applied Materials & Interfaces 2021, 13 (7), 8823-8831.
6. Kamińska, A.; Winkler, K.; Kowalska, A.; Witkowska, E.; Szymborski, T.; Janeczek, A.; Waluk, J., SERS-based Immunoassay in a Microfluidic System for the Multiplexed Recognition of Interleukins from Blood Plasma: Towards Picogram Detection. Scientific Reports 2017, 7 (1), 10656.
7. Golightly, R. S.; Doering, W. E.; Natan, M. J., Surface-Enhanced Raman Spectroscopy and Homeland Security: A Perfect Match? ACS Nano 2009, 3 (10), 2859-2869.
8. Chen, J.; Liu, G.; Zhu, Y.-z.; Su, M.; Yin, P.; Wu, X.-j.; Lu, Q.; Tan, C.; Zhao, M.; Liu, Z.; Yang, W.; Li, H.; Nam, G.-H.; Zhang, L.; Chen, Z.; Huang, X.; Radjenovic, P. M.; Huang, W.; Tian, Z.-q.; Li, J.-f.; Zhang, H., Ag@MoS2 Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2. Journal of the American Chemical Society 2020, 142 (15), 7161-7167.
9. Cialla-May, D.; Zheng, X. S.; Weber, K.; Popp, J., Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chemical Society Reviews 2017, 46 (13), 3945-3961.
10. Liu, K.-K.; Tadepalli, S.; Tian, L.; Singamaneni, S., Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles. Chemistry of Materials 2015, 27 (15), 5261-5270.
11. Liu, K.-K.; Tadepalli, S.; Wang, Z.; Jiang, Q.; Singamaneni, S., Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots. Analyst 2017, 142 (23), 4536-4543.
12. Song, X.; Yi, W.; Li, J.; Kong, Q.; Bai, H.; Xi, G., Selective Preparation of Mo2N and MoN with High Surface Area for Flexible SERS Sensing. Nano Letters 2021, 21 (10), 4410-4414.
13. Tanzid, M.; Sobhani, A.; DeSantis, C. J.; Cui, Y.; Hogan, N. J.; Samaniego, A.; Veeraraghavan, A.; Halas, N. J., Imaging through plasmonic nanoparticles. Proceedings of the National Academy of Sciences 2016, 113 (20), 5558.
14. Ohannesian, N.; Misbah, I.; Lin, S. H.; Shih, W.-C., Plasmonic nano-aperture label-free imaging (PANORAMA). Nature Communications 2020, 11 (1), 5805.
15. Tian, L.; Gandra, N.; Singamaneni, S., Monitoring Controlled Release of Payload from Gold Nanocages Using Surface Enhanced Raman Scattering. ACS Nano 2013, 7 (5), 4252-4260.
16. Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A., The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews 2012, 41 (7), 2740-2779.
17. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonic nanosensors. Nature Materials 2008, 7 (6), 442-453.
18. Liu, K.-K.; Tadepalli, S.; Kumari, G.; Banerjee, P.; Tian, L.; Jain, P. K.; Singamaneni, S., Polarization-Dependent Surface-Enhanced Raman Scattering Activity of Anisotropic Plasmonic Nanorattles. The Journal of Physical Chemistry C 2016, 120 (30), 16899-16906.
19. Dang, H.; Park, S.-G.; Wu, Y.; Choi, N.; Yang, J.-Y.; Lee, S.; Joo, S.-W.; Chen, L.; Choo, J., Reproducible and Sensitive Plasmonic Sensing Platforms Based on Au-Nanoparticle-Internalized Nanodimpled Substrates. Advanced Functional Materials 2021, 31 (49), 2105703.
20. Park, H.-S.; Park, J.; Kwak, J. Y.; Hwang, G.-W.; Jeong, D.-S.; Lee, K.-S., Novel nano-plasmonic sensing platform based on vertical conductive bridge. Scientific Reports 2021, 11 (1), 3184.
21. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
22. Furukawa, H.; Cordova Kyle, E.; O’Keeffe, M.; Yaghi Omar, M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
23. Wang, C.; Tadepalli, S.; Luan, J.; Liu, K.-K.; Morrissey, J. J.; Kharasch, E. D.; Naik, R. R.; Singamaneni, S., Metal-Organic Framework as a Protective Coating for Biodiagnostic Chips. Advanced Materials 2017, 29 (7), 1604433.
24. Ma, L.; Abney, C.; Lin, W., Enantioselective catalysis with homochiral metal–organic frameworks. Chemical Society Reviews 2009, 38 (5), 1248-1256.
25. Pascanu, V.; González Miera, G.; Inge, A. K.; Martín-Matute, B., Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. Journal of the American Chemical Society 2019, 141 (18), 7223-7234.
26. Li, B.; Wen, H.-M.; Zhou, W.; Chen, B., Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? The Journal of Physical Chemistry Letters 2014, 5 (20), 3468-3479.
27. Ma, S.; Zhou, H.-C., Gas storage in porous metal–organic frameworks for clean energy applications. Chemical Communications 2010, 46 (1), 44-53.
28. Lawson, H. D.; Walton, S. P.; Chan, C., Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Applied Materials & Interfaces 2021, 13 (6), 7004-7020.
29. Sun, H.; Cong, S.; Zheng, Z.; Wang, Z.; Chen, Z.; Zhao, Z., Metal–Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability. Journal of the American Chemical Society 2019, 141 (2), 870-878.
30. Ding, Q.; Wang, J.; Chen, X.; Liu, H.; Li, Q.; Wang, Y.; Yang, S., Quantitative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function. Nano Letters 2020, 20 (10), 7304-7312.
31. Yang, X.; Liu, Y.; Lam, S. H.; Wang, J.; Wen, S.; Yam, C.; Shao, L.; Wang, J., Site-Selective Deposition of Metal–Organic Frameworks on Gold Nanobipyramids for Surface-Enhanced Raman Scattering. Nano Letters 2021, 21 (19), 8205-8212.
32. Chen, N.; Xiao, T.-H.; Luo, Z.; Kitahama, Y.; Hiramatsu, K.; Kishimoto, N.; Itoh, T.; Cheng, Z.; Goda, K., Porous carbon nanowire array for surface-enhanced Raman spectroscopy. Nature Communications 2020, 11 (1), 4772.
33. Yang, S.; Dai, X.; Stogin, B. B.; Wong, T.-S., Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proceedings of the National Academy of Sciences 2016, 113 (2), 268-273.
34. Liu, Z.; Gao, Y.; Jin, L.; Jin, H.; Xu, N.; Yu, X.; Yu, S., Core–shell regeneration magnetic molecularly imprinted polymers-based SERS for sibutramine rapid detection. ACS Sustainable Chemistry & Engineering 2019, 7 (9), 8168-8175.
35. Jiang, X.; He, S.; Han, G.; Long, J.; Li, S.; Lau, C. H.; Zhang, S.; Shao, L., Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Applied Materials & Interfaces 2021, 13 (9), 11296-11305.
36. Thomas, A.; Prakash, M., The Role of Binary Mixtures of Ionic Liquids in ZIF-8 for Selective Gas Storage and Separation: A Perspective from Computational Approaches. The Journal of Physical Chemistry C 2020, 124 (48), 26203-26213.
37. Dang, T. T.; Zhu, Y.; Ngiam, J. S.; Ghosh, S. C.; Chen, A.; Seayad, A. M., Palladium nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for aminocarbonylation. Acs Catalysis 2013, 3 (6), 1406-1410.
38. Razmjou, A.; Asadnia, M.; Ghaebi, O.; Yang, H.-C.; Ebrahimi Warkiani, M.; Hou, J.; Chen, V., Preparation of iridescent 2D photonic crystals by using a mussel-inspired spatial patterning of ZIF-8 with potential applications in optical switch and chemical sensor. ACS applied materials & interfaces 2017, 9 (43), 38076-38080.
39. Yan, X.-b.; Han, Z.-j.; Yang, Y.; Tay, B.-k., Fabrication of carbon nanotube− polyaniline composites via electrostatic adsorption in aqueous colloids. The Journal of Physical Chemistry C 2007, 111 (11), 4125-4131.
40. Waugh, J.; Fessenden, R., Nuclear resonance spectra of hydrocarbons: the free electron model. Journal of the American Chemical Society 1957, 79 (4), 846-849.
41. Chen, H.; Shao, L.; Li, Q.; Wang, J., Gold nanorods and their plasmonic properties. Chemical Society Reviews 2013, 42 (7), 2679-2724.
42. McMahon, J. M.; Gray, S. K.; Schatz, G. C., Nonlocal optical response of metal nanostructures with arbitrary shape. Physical review letters 2009, 103 (9), 097403.
43. Jiang, D.; Huang, C.; Zhu, J.; Wang, P.; Liu, Z.; Fang, D., Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs). Coordination Chemistry Reviews 2021, 444, 214064.
44. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
45. Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K., A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications 2013, 49 (82), 9449-9451.
46. Huo, S.-H.; Yan, X.-P., Metal–organic framework MIL-100 (Fe) for the adsorption of malachite green from aqueous solution. Journal of Materials Chemistry 2012, 22 (15), 7449-7455.
47. Lin, K.-S.; Adhikari, A. K.; Ku, C.-N.; Chiang, C.-L.; Kuo, H., Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. International journal of hydrogen energy 2012, 37 (18), 13865-13871.
48. Smekal, A., Zur Quantentheorie der Streuung und Dispersion. Zeitschrift für Physik 1925, 32 (1), 241-244.
49. Raman, C.; Krishnan, K., Polarisation of scattered light-quanta. Nature 1928, 122 (3066), 169-169.
50. Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K., One-and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Letters 2007, 7 (9), 2819-2823.
51. Clauson, S. L.; Christesen, S. D.; Spencer, K. M. In High-resolution UV echelle spectrograph for environmental sensing, Chemical and Biological Point Sensors for Homeland Defense, International Society for Optics and Photonics: 2004; pp 34-41.
52. Spencer, K. M.; Sylvia, J. M.; Clauson, S. L.; Bertone, J. F.; Christesen, S. D. In Surface-enhanced Raman for monitoring toxins in water, Chemical and Biological Standoff Detection, International Society for Optics and Photonics: 2004; pp 340-348.
53. Guo, X.; Li, J.; Arabi, M.; Wang, X.; Wang, Y.; Chen, L., Molecular-imprinting-based surface-enhanced Raman scattering sensors. Acs Sensors 2020, 5 (3), 601-619.
54. Greeneltch, N. G.; Davis, A. S.; Valley, N. A.; Casadio, F.; Schatz, G. C.; Van Duyne, R. P.; Shah, N. C., Near-infrared surface-enhanced raman spectroscopy (NIR-SERS) for the identification of eosin Y: Theoretical calculations and evaluation of two different nanoplasmonic substrates. The Journal of Physical Chemistry A 2012, 116 (48), 11863-11869.
55. 程光煦, 拉曼 布里淵散射2nd edition. 2007.
56. Parobek, D.; Shenoy, G.; Zhou, F.; Peng, Z.; Ward, M.; Liu, H., Synthesizing and characterizing graphene via Raman spectroscopy: an upper-level undergraduate experiment that exposes students to Raman spectroscopy and a 2D nanomaterial. Journal of Chemical Education 2016, 93 (10), 1798-1803.
57. Vo-Dinh, T., Surface-enhanced Raman spectroscopy using metallic nanostructures. TrAC Trends in Analytical Chemistry 1998, 17 (8-9), 557-582.
58. Cheng, J.-X.; Xie, X. S., Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. ACS Publications: 2004; Vol. 108, pp 827-840.
59. Weitz, D.; Garoff, S.; Gersten, J.; Nitzan, A., The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. The Journal of chemical physics 1983, 78 (9), 5324-5338.
60. Bistaffa, M. J.; Camacho, S. A.; Pazin, W. M.; Constantino, C. J.; Oliveira Jr, O. N.; Aoki, P. H., Immunoassay platform with surface-enhanced resonance Raman scattering for detecting trace levels of SARS-CoV-2 spike protein. Talanta 2022, 123381.
61. Smith, W., Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chemical Society Reviews 2008, 37 (5), 955-964.
62. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry 1977, 84 (1), 1-20.
63. Kneipp, K.; Wang, Y.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Physical review letters 1996, 76 (14), 2444.
64. Golab, J.; Sprague, J.; Carron, K.; Schatz, G.; Van Duyne, R., A surface enhanced hyper‐Raman scattering study of pyridine adsorbed onto silver: Experiment and theory. The Journal of chemical physics 1988, 88 (12), 7942-7951.
65. Campion, A.; Ivanecky III, J.; Child, C.; Foster, M., On the mechanism of chemical enhancement in surface-enhanced Raman scattering. Journal of the American Chemical Society 1995, 117 (47), 11807-11808.
66. Fu, Q.; Wu, F.; Wang, B.; Bu, Y.; Draxl, C., Spatial Confinement as an Effective Strategy for Improving the Catalytic Selectivity in Acetylene Hydrogenation. ACS Applied Materials & Interfaces 2020, 12 (35), 39352-39361.
67. Zhang, Z.; Chen, Z.; Qu, C.; Chen, L., Highly sensitive visual detection of copper ions based on the shape-dependent LSPR spectroscopy of gold nanorods. Langmuir 2014, 30 (12), 3625-3630.
68. Gangadharan, D. T.; Xu, Z.; Liu, Y.; Izquierdo, R.; Ma, D., Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 2017, 6 (1), 153-175.
69. Etchegoin, P. G.; Le Ru, E., A perspective on single molecule SERS: current status and future challenges. Physical Chemistry Chemical Physics 2008, 10 (40), 6079-6089.
70. Zhou, Y.; Chen, G.; Zou, S., Radiative Decay Rate Enhancement and Quenching for Multiple Emitters near a Metal Nanoparticle Surface. The Journal of Physical Chemistry C 2021, 125 (4), 2531-2536.
71. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical society reviews 1998, 27 (4), 241-250.
72. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter 2002, 14 (18), R597.
73. Huang, X.; Neretina, S.; El‐Sayed, M. A., Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced materials 2009, 21 (48), 4880-4910.
74. Zheng, G.; de Marchi, S.; López‐Puente, V.; Sentosun, K.; Polavarapu, L.; Pérez‐Juste, I.; Hill, E. H.; Bals, S.; Liz‐Marzán, L. M.; Pastoriza‐Santos, I., Encapsulation of single plasmonic nanoparticles within ZIF‐8 and SERS analysis of the MOF flexibility. Small 2016, 12 (29), 3935-3943.
75. Young, C.; Salunkhe, R. R.; Tang, J.; Hu, C.-C.; Shahabuddin, M.; Yanmaz, E.; Hossain, M. S. A.; Kim, J. H.; Yamauchi, Y., Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Physical Chemistry Chemical Physics 2016, 18 (42), 29308-29315.
76. Chen, N.; Xiao, T.-H.; Luo, Z.; Kitahama, Y.; Hiramatsu, K.; Kishimoto, N.; Itoh, T.; Cheng, Z.; Goda, K., Porous carbon nanowire array for surface-enhanced Raman spectroscopy. Nature communications 2020, 11 (1), 1-8.
77. Zhang, S.; Xiong, R.; Mahmoud, M. A.; Quigley, E. N.; Chang, H.; El-Sayed, M.; Tsukruk, V. V., Dual-excitation nanocellulose plasmonic membranes for molecular and cellular SERS detection. ACS applied materials & interfaces 2018, 10 (21), 18380-18389.
78. Nikoobakht, B.; El-Sayed, M. A., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials 2003, 15 (10), 1957-1962.
79. Zhang, Y.; Jia, Y.; Li, M.; Hou, L. a., Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific reports 2018, 8 (1), 1-7.
80. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y., Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15 (9), 1794-1801.
81. Jian, M.; Liu, B.; Liu, R.; Qu, J.; Wang, H.; Zhang, X., Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. Rsc Advances 2015, 5 (60), 48433-48441.
82. Tanaka, S.; Kida, K.; Okita, M.; Ito, Y.; Miyake, Y., Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chemistry Letters 2012, 41 (10), 1337-1339.
83. Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications 2011, 47 (7), 2071-2073.
84. Abbasi, Z.; Shamsaei, E.; Leong, S. K.; Ladewig, B.; Zhang, X.; Wang, H., Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. Microporous and Mesoporous Materials 2016, 236, 28-37.
85. Torad, N. L.; Hu, M.; Kamachi, Y.; Takai, K.; Imura, M.; Naito, M.; Yamauchi, Y., Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chemical communications 2013, 49 (25), 2521-2523.
86. Luanwuthi, S.; Krittayavathananon, A.; Srimuk, P.; Sawangphruk, M., In situ synthesis of permselective zeolitic imidazolate framework-8/graphene oxide composites: rotating disk electrode and Langmuir adsorption isotherm. RSC Advances 2015, 5 (58), 46617-46623.
87. Young, C.; Salunkhe, R. R.; Tang, J.; Hu, C.-C.; Shahabuddin, M.; Yanmaz, E.; Hossain, M. S. A.; Kim, J. H.; Yamauchi, Y., Correction: Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Physical Chemistry Chemical Physics 2017, 19 (33), 22596-22596.
88. Wen, X.; Li, G.; Zhang, J.; Zhang, Q.; Peng, B.; Wong, L. M.; Wang, S.; Xiong, Q., Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering. Nanoscale 2014, 6 (1), 132-139.