簡易檢索 / 詳目顯示

研究生: 廖冠曄
Liao, Guan-Ye
論文名稱: 表面電漿子奈米結構修飾於ZIF-8衍生之奈米多孔碳應用於表面增強拉曼光譜 (SERS)
Plasmonic nanostructures decorated ZIF-8 derived nanoporous carbon for SERS detection
指導教授: 劉耕谷
Liu, Keng-Ku
口試委員: 陳之碩
Chen, Chi-Shuo
董瑞安
Doong, Ruey-An
林芳新
Lin, Fang-Hsin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 65
中文關鍵詞: 表面增強拉曼散射沸石咪唑酯有機框架表面電漿子化學感測器
外文關鍵詞: surface-enhanced Raman scattering, zeolitic imidazolate framework-8, plasmonics, chemical sensors
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 快速識別疾病標誌物,對於疾病診斷、癒後和治療監測至關重要,表面增強拉曼散射是一種靈敏檢測光譜分析技術,具有識別分析物的能力,由於其靈敏度足以檢測極低濃度的分子和迅速的分析能力,廣泛應用各個感測技術領域。於目前研究中,開發一種具有快速識別及高穩定性的SERS基材仍然是一個艱難的挑戰。在本實驗中,將使用表面電漿子奈米結構修飾經過高溫熱處理沸石咪唑酯有機框架。多孔的棒狀金銀奈米核殼結構,是由於棒狀金銀奈米核殼結構經由化學電置換,使紅外線可見光波長調整至所使用的拉曼光譜的氦氖波長 (632.8 nm),放大並顯著增強拉曼探針分子的檢測訊號。
    最後,因為表面電漿子奈米結構所修飾的ZIF-8衍生之奈米多孔碳,對拉曼探針分子具有好的檢測效率,因此,本實驗的拉曼檢測平台擁有巨大的潛力,相信未來可應用於許多的研究,如:生醫感測,食品安全等等。


    Disease identification and prognosis are vital for disease assessment, prognosis, and treatment monitoring. The sensitive and rapid analysis capabilities of surface-enhanced Raman scattering (SERS) are widely used in various sensing technologies to identify analytes due to its ability to detect analytes at very low concentrations. In spite of this, developing a SERS substrate with fast recognition and stability remains a challenge. The objective of this work is to carbonize the zeolitic imidazolate framework-8 (ZIF-8) nanostructures through the use of a high temperature annealing process and modify the porous AuNR@Ag nanoparticles on the surface of nanoporous carbon nanostructures in order to obtain high SERS signals. The excitation wavelength of porous AuNR@Ag is adjusted to the laser excitation wavelength (632.8 nm) of the Raman spectroscope which leads to amplification and significant enhancement of the Raman signal. Consequently, the ZIF-8 derived nanoporous carbon decorated with plasmonic nanostructures has excellent Raman detecting efficiency. Therefore, our Raman sensing platform has huge potential and can be used for biomedical sensing, food safety and various research fields in the future.

    目錄 致謝 2 摘要 3 圖目錄 9 表目錄 12 第一章 緒論 13 1.1引言 13 1.2研究動機 14 第二章 文獻回顧 15 2.1實驗運用之奈米材料 15 2.1.1 表面電漿子 (Surface plasmons, SPs) 15 2.1.2 金屬有機框架 (Metal organic framework, MOF) 16 2.2拉曼光譜學 17 2.2.1拉曼發展與簡介 17 2.2.2 拉曼散射機制 18 2.2.3表面增強拉曼散射(Surface-Enhanced Raman Scattering, SERS) 23 2.2.4表面增強拉曼散射機制(Surface Enhanced Raman Scattering Mechanism) 24 第三章 實驗方法與步驟 29 3.1實驗儀器 29 3.1.1 場發射掃描電子顯微鏡 (Field emission scanning electron microscope) 29 3.1.2 EDX能量色散X光譜分析儀 (Energy-dispersive X-ray spectrometer) 29 3.1.3 X射線繞射儀 (X-Ray Diffractometer) 29 3.1.4 紫外-可見分光譜儀(Ultraviolet–visible spectrometer,UV-Vis) 30 3.1.5 霍氏轉換紅外光譜儀 (Fourier-transform infrared spectrometer) 30 3.1.6 高解析電子能譜儀 (High resolution X-ray photoelectron spectrometer) 30 3.1.7感應耦合電漿質譜分析儀 (Inductively coupled plasma-mass spectrometer) 30 3.1.8 共軛聚焦顯微拉曼光譜儀 (Raman spectrometer) 31 3.1.9熱分析設備 (Thermal analyzers, TGA/DSC) 31 3.1.10高解像能穿透式電子顯微鏡 (Transmission electron micro-scope) 31 3.2實驗材料 32 3.2.1 實驗材料及化學品 32 3.3合成方法 33 3.3.1 棒狀金奈米結構(Gold nanorod, AuNR)的製程步驟 33 3.3.2 奈米棒狀之金銀核殼結構(Gold nanorod@silver, AuNR@Ag)合成 33 3.3.3 孔洞奈米棒狀之金銀核殼結構(Porous gold nanorod@silver, Porous AuNR@Ag)合成 33 3.3.4金屬有機框架ZIF-8(Zeolitic imidazolate framework-8, ZIF-8)的合成 34 3.3.5 ZIF-8衍生碳(ZIF-8 derived of carbon, NPC)的合成 34 3.3.6 透過真空抽氣過濾使NPC與奈米粒子沉積在濾紙 34 3.3.7 拉曼光譜測量 35 第四章 結果與討論 36 4.1 金/銀奈米結構的合成及材料分析 36 4.2 ZIF-8 和 ZIF-8 衍生碳的特性 40 4.3 表面電漿子奈米結構修飾於ZIF-8衍生的奈米多孔碳(NPC)應用於SERS檢測 43 4.4 表面電漿子奈米結構的吸附以增強拉曼效應 47 第五章 結論 57 第六章 參考文獻 58 圖目錄 圖 1. 拉曼效應之能態之能階圖55。 20 圖 2. 拉曼瑞利散射與拉曼散射(Stokes/ anti-Stokes)能階圖56。 21 圖 3. 共振拉曼光譜示意圖61。 22 圖 4. 局部表面電漿粒子共振 (Localized Surface Plasmon Resonance, LSPR) 示意圖。66,67從圖中顯示了傳導電子雲與原子核之間的相對位移。 25 圖 5. 位於聚乙二醇 (PEG) (8000 Da) 基質中銀奈米粒子熱點 (hot spot) 的示意圖68。從 (A) 和 (B) 中可以知道在顆粒連接處,有無熱點的形成,具有較長鏈的 (A)由於表面電漿共振所引起的電磁場的局部增加,將有助於分析物的表面增強拉曼散射 (SERS);而 (B) 為較短鍊長 (1000 Da),故無熱點產生,因此沒有得到拉曼增強訊號。 26 圖 6. 模擬兩金奈米粒子熱點圖中69。 27 圖 7. 分子-金屬複合物能階圖71。 28 圖 8. (a) AuNR, (b) AuNR@Ag, (c)具有Porous AuNR@Ag 的TEM 圖像。 (d) AuNR、AuNR@Ag 和具有孔洞結構 AuNR@Ag 的紫外-可見光-近紅外光譜。 37 圖 9. AuNR (a) (b)、AuNR@Ag (c) (d) 和具有孔洞結構的AuNR@Ag (e) (f)的長度和寬度統計圖。 38 圖 10. (a) AuNR@Ag 和(b)Porous AuNR@Ag 在基板上的 SEM 圖像。 (c) 在電置換反應期間添加不同體積的 HAuCl4 水溶液後 AuNR@Ag 的 UV-Vis-NIR 光譜。(c)中的虛線表示拉曼光譜的激發波長。 39 圖 11. 由 (a) 4、(b) 6、(c) 8、(d) 10 的各種Hmim/Zn摩爾濃度比製備的ZIF-8樣品的SEM圖像。 40 圖 12. ZIF-8和ZIF-8 衍生碳 (NPC)的SEM/TEM圖像。ZIF-8 的SEM圖像相對 (a) 低和 (b) 高放大倍率,(c) ZIF-8 的 TEM 圖像;ZIF-8 衍生碳 (NPC) 的 SEM 圖像,具有相對 (d) 低和 (e) 高放大倍率, (f) ZIF-8 衍生碳的 TEM 圖像。(c) 和 (f) 中的插圖是代表性為單個顆粒聚焦放大的 TEM 圖像。 41 圖 13. ZIF-8 衍生碳 (NPC) 和由 Hmim/Zn濃度摩爾相對比為4製備的 ZIF-8 樣品的元素圖譜分析 (EDX mapping) 42 圖 14. ZIF-8的熱比重分析 (TGA / DSC)。 43 圖 15. 表面電漿子奈米結構修飾的 ZIF-8 奈米多孔碳平台的工作原理示意圖。 43 圖 16. ZIF-8 和 ZIF-8 衍生碳的 XRD 和拉曼光譜分析。(a) (b) 分別為ZIF-8和ZIF-8 衍生碳 (NPC)的XRD 圖譜。 (c) (d) 分別為ZIF-8和ZIF-8 衍生碳 (NPC)的的拉曼光譜。 45 圖 17. ZIF-8 和 ZIF-8 衍生碳的 XPS分析。進行氧化態和表面化學成分,(a) ZIF-8 的 XPS全能譜圖掃描和 (b) 碳 (C1s)、(c) 氮 (N1s) 和 (d) 氧 (O1s) 的結合能。 (e) ZIF-8 衍生碳的 XPS全能譜圖掃描以及 (f) 碳 (C1s)、(g) 氮 (N1s) 和 (h) 氧 (O1s) ZIF-8 的結合能。 46 圖 18. ZIF-8 和 ZIF-8 衍生碳的 FTIR 光譜。 47 圖 19. ZIF-8在不同溫度下,高溫碳化的SEM圖。(a) 700°C (b) 900°C。 48 圖 20. ZIF-8衍生碳 (NPC) 表面吸附奈米粒子吸附聚集之SEM比較。(a)奈米粒子二次離心之後吸附及(b)奈米粒子經由一次離心後混和ZIF-8衍生碳 (NPC) 情況。 49 圖 21. ZIF-8衍生碳吸附於濾紙上情況。改善前後對比圖。 50 圖 22. 吸附ZIF-8衍生碳與奈米粒子紙於濾紙上示意圖。 51 圖 23. 浸泡於不同時間下,濾紙上的ZIF-8衍生碳的光學顯微鏡圖 (Optical microscope)。 52 圖 24. 於穩定持續之真空抽氣過濾下,在濾紙上滴入Porous AuNR@Ag示意圖。 53 圖 25. (a) 濾紙上有 ZIF-8 衍生碳 (NPC) 與Porous AuNR@Ag 的光學顯微鏡圖。(b) ZIF-8 衍生碳 (NPC) 表面吸附Porous AuNR@Ag 的 SEM 圖像。 (c) 在 100 pM 的固定 2-NT 濃度下,有或沒有Porous AuNR@Ag奈米顆粒增強,產生的 SERS 信號強度的差異。 (d) 2-NT 不同濃度梯度下的不同拉曼信號。 (a) 中的插圖是 SEM 圖像,比例尺為250 nm。 55 圖 26. 1381 cm-1 SERS峰的強度與2-NT濃度的關係。 56   表目錄 表 1. ICP-MS分析 40 表 2. BET孔隙分析檢測。 49

    1. Lee, C. H.; Tian, L.; Singamaneni, S., Paper-Based SERS Swab for Rapid Trace Detection on Real-World Surfaces. ACS Applied Materials & Interfaces 2010, 2 (12), 3429-3435.
    2. Lee, C. H.; Hankus, M. E.; Tian, L.; Pellegrino, P. M.; Singamaneni, S., Highly Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Plasmonic Nanostructures. Analytical Chemistry 2011, 83 (23), 8953-8958.
    3. Tian, L.; Liu, K.-K.; Morrissey, J. J.; Gandra, N.; Kharasch, E. D.; Singamaneni, S., Gold nanocages with built-in artificial antibodies for label-free plasmonic biosensing. Journal of Materials Chemistry B 2014, 2 (2), 167-170.
    4. Ko, H.; Singamaneni, S.; Tsukruk, V. V., Nanostructured Surfaces and Assemblies as SERS Media. Small 2008, 4 (10), 1576-1599.
    5. Er, E.; Sánchez-Iglesias, A.; Silvestri, A.; Arnaiz, B.; Liz-Marzán, L. M.; Prato, M.; Criado, A., Metal Nanoparticles/MoS2 Surface-Enhanced Raman Scattering-Based Sandwich Immunoassay for α-Fetoprotein Detection. ACS Applied Materials & Interfaces 2021, 13 (7), 8823-8831.
    6. Kamińska, A.; Winkler, K.; Kowalska, A.; Witkowska, E.; Szymborski, T.; Janeczek, A.; Waluk, J., SERS-based Immunoassay in a Microfluidic System for the Multiplexed Recognition of Interleukins from Blood Plasma: Towards Picogram Detection. Scientific Reports 2017, 7 (1), 10656.
    7. Golightly, R. S.; Doering, W. E.; Natan, M. J., Surface-Enhanced Raman Spectroscopy and Homeland Security: A Perfect Match? ACS Nano 2009, 3 (10), 2859-2869.
    8. Chen, J.; Liu, G.; Zhu, Y.-z.; Su, M.; Yin, P.; Wu, X.-j.; Lu, Q.; Tan, C.; Zhao, M.; Liu, Z.; Yang, W.; Li, H.; Nam, G.-H.; Zhang, L.; Chen, Z.; Huang, X.; Radjenovic, P. M.; Huang, W.; Tian, Z.-q.; Li, J.-f.; Zhang, H., Ag@MoS2 Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2. Journal of the American Chemical Society 2020, 142 (15), 7161-7167.
    9. Cialla-May, D.; Zheng, X. S.; Weber, K.; Popp, J., Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chemical Society Reviews 2017, 46 (13), 3945-3961.
    10. Liu, K.-K.; Tadepalli, S.; Tian, L.; Singamaneni, S., Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles. Chemistry of Materials 2015, 27 (15), 5261-5270.
    11. Liu, K.-K.; Tadepalli, S.; Wang, Z.; Jiang, Q.; Singamaneni, S., Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots. Analyst 2017, 142 (23), 4536-4543.
    12. Song, X.; Yi, W.; Li, J.; Kong, Q.; Bai, H.; Xi, G., Selective Preparation of Mo2N and MoN with High Surface Area for Flexible SERS Sensing. Nano Letters 2021, 21 (10), 4410-4414.
    13. Tanzid, M.; Sobhani, A.; DeSantis, C. J.; Cui, Y.; Hogan, N. J.; Samaniego, A.; Veeraraghavan, A.; Halas, N. J., Imaging through plasmonic nanoparticles. Proceedings of the National Academy of Sciences 2016, 113 (20), 5558.
    14. Ohannesian, N.; Misbah, I.; Lin, S. H.; Shih, W.-C., Plasmonic nano-aperture label-free imaging (PANORAMA). Nature Communications 2020, 11 (1), 5805.
    15. Tian, L.; Gandra, N.; Singamaneni, S., Monitoring Controlled Release of Payload from Gold Nanocages Using Surface Enhanced Raman Scattering. ACS Nano 2013, 7 (5), 4252-4260.
    16. Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A., The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews 2012, 41 (7), 2740-2779.
    17. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonic nanosensors. Nature Materials 2008, 7 (6), 442-453.
    18. Liu, K.-K.; Tadepalli, S.; Kumari, G.; Banerjee, P.; Tian, L.; Jain, P. K.; Singamaneni, S., Polarization-Dependent Surface-Enhanced Raman Scattering Activity of Anisotropic Plasmonic Nanorattles. The Journal of Physical Chemistry C 2016, 120 (30), 16899-16906.
    19. Dang, H.; Park, S.-G.; Wu, Y.; Choi, N.; Yang, J.-Y.; Lee, S.; Joo, S.-W.; Chen, L.; Choo, J., Reproducible and Sensitive Plasmonic Sensing Platforms Based on Au-Nanoparticle-Internalized Nanodimpled Substrates. Advanced Functional Materials 2021, 31 (49), 2105703.
    20. Park, H.-S.; Park, J.; Kwak, J. Y.; Hwang, G.-W.; Jeong, D.-S.; Lee, K.-S., Novel nano-plasmonic sensing platform based on vertical conductive bridge. Scientific Reports 2021, 11 (1), 3184.
    21. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
    22. Furukawa, H.; Cordova Kyle, E.; O’Keeffe, M.; Yaghi Omar, M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
    23. Wang, C.; Tadepalli, S.; Luan, J.; Liu, K.-K.; Morrissey, J. J.; Kharasch, E. D.; Naik, R. R.; Singamaneni, S., Metal-Organic Framework as a Protective Coating for Biodiagnostic Chips. Advanced Materials 2017, 29 (7), 1604433.
    24. Ma, L.; Abney, C.; Lin, W., Enantioselective catalysis with homochiral metal–organic frameworks. Chemical Society Reviews 2009, 38 (5), 1248-1256.
    25. Pascanu, V.; González Miera, G.; Inge, A. K.; Martín-Matute, B., Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. Journal of the American Chemical Society 2019, 141 (18), 7223-7234.
    26. Li, B.; Wen, H.-M.; Zhou, W.; Chen, B., Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? The Journal of Physical Chemistry Letters 2014, 5 (20), 3468-3479.
    27. Ma, S.; Zhou, H.-C., Gas storage in porous metal–organic frameworks for clean energy applications. Chemical Communications 2010, 46 (1), 44-53.
    28. Lawson, H. D.; Walton, S. P.; Chan, C., Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Applied Materials & Interfaces 2021, 13 (6), 7004-7020.
    29. Sun, H.; Cong, S.; Zheng, Z.; Wang, Z.; Chen, Z.; Zhao, Z., Metal–Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability. Journal of the American Chemical Society 2019, 141 (2), 870-878.
    30. Ding, Q.; Wang, J.; Chen, X.; Liu, H.; Li, Q.; Wang, Y.; Yang, S., Quantitative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function. Nano Letters 2020, 20 (10), 7304-7312.
    31. Yang, X.; Liu, Y.; Lam, S. H.; Wang, J.; Wen, S.; Yam, C.; Shao, L.; Wang, J., Site-Selective Deposition of Metal–Organic Frameworks on Gold Nanobipyramids for Surface-Enhanced Raman Scattering. Nano Letters 2021, 21 (19), 8205-8212.
    32. Chen, N.; Xiao, T.-H.; Luo, Z.; Kitahama, Y.; Hiramatsu, K.; Kishimoto, N.; Itoh, T.; Cheng, Z.; Goda, K., Porous carbon nanowire array for surface-enhanced Raman spectroscopy. Nature Communications 2020, 11 (1), 4772.
    33. Yang, S.; Dai, X.; Stogin, B. B.; Wong, T.-S., Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proceedings of the National Academy of Sciences 2016, 113 (2), 268-273.
    34. Liu, Z.; Gao, Y.; Jin, L.; Jin, H.; Xu, N.; Yu, X.; Yu, S., Core–shell regeneration magnetic molecularly imprinted polymers-based SERS for sibutramine rapid detection. ACS Sustainable Chemistry & Engineering 2019, 7 (9), 8168-8175.
    35. Jiang, X.; He, S.; Han, G.; Long, J.; Li, S.; Lau, C. H.; Zhang, S.; Shao, L., Aqueous one-step modulation for synthesizing monodispersed ZIF-8 nanocrystals for mixed-matrix membrane. ACS Applied Materials & Interfaces 2021, 13 (9), 11296-11305.
    36. Thomas, A.; Prakash, M., The Role of Binary Mixtures of Ionic Liquids in ZIF-8 for Selective Gas Storage and Separation: A Perspective from Computational Approaches. The Journal of Physical Chemistry C 2020, 124 (48), 26203-26213.
    37. Dang, T. T.; Zhu, Y.; Ngiam, J. S.; Ghosh, S. C.; Chen, A.; Seayad, A. M., Palladium nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for aminocarbonylation. Acs Catalysis 2013, 3 (6), 1406-1410.
    38. Razmjou, A.; Asadnia, M.; Ghaebi, O.; Yang, H.-C.; Ebrahimi Warkiani, M.; Hou, J.; Chen, V., Preparation of iridescent 2D photonic crystals by using a mussel-inspired spatial patterning of ZIF-8 with potential applications in optical switch and chemical sensor. ACS applied materials & interfaces 2017, 9 (43), 38076-38080.
    39. Yan, X.-b.; Han, Z.-j.; Yang, Y.; Tay, B.-k., Fabrication of carbon nanotube− polyaniline composites via electrostatic adsorption in aqueous colloids. The Journal of Physical Chemistry C 2007, 111 (11), 4125-4131.
    40. Waugh, J.; Fessenden, R., Nuclear resonance spectra of hydrocarbons: the free electron model. Journal of the American Chemical Society 1957, 79 (4), 846-849.
    41. Chen, H.; Shao, L.; Li, Q.; Wang, J., Gold nanorods and their plasmonic properties. Chemical Society Reviews 2013, 42 (7), 2679-2724.
    42. McMahon, J. M.; Gray, S. K.; Schatz, G. C., Nonlocal optical response of metal nanostructures with arbitrary shape. Physical review letters 2009, 103 (9), 097403.
    43. Jiang, D.; Huang, C.; Zhu, J.; Wang, P.; Liu, Z.; Fang, D., Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs). Coordination Chemistry Reviews 2021, 444, 214064.
    44. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
    45. Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K., A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications 2013, 49 (82), 9449-9451.
    46. Huo, S.-H.; Yan, X.-P., Metal–organic framework MIL-100 (Fe) for the adsorption of malachite green from aqueous solution. Journal of Materials Chemistry 2012, 22 (15), 7449-7455.
    47. Lin, K.-S.; Adhikari, A. K.; Ku, C.-N.; Chiang, C.-L.; Kuo, H., Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. International journal of hydrogen energy 2012, 37 (18), 13865-13871.
    48. Smekal, A., Zur Quantentheorie der Streuung und Dispersion. Zeitschrift für Physik 1925, 32 (1), 241-244.
    49. Raman, C.; Krishnan, K., Polarisation of scattered light-quanta. Nature 1928, 122 (3066), 169-169.
    50. Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K., One-and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Letters 2007, 7 (9), 2819-2823.
    51. Clauson, S. L.; Christesen, S. D.; Spencer, K. M. In High-resolution UV echelle spectrograph for environmental sensing, Chemical and Biological Point Sensors for Homeland Defense, International Society for Optics and Photonics: 2004; pp 34-41.
    52. Spencer, K. M.; Sylvia, J. M.; Clauson, S. L.; Bertone, J. F.; Christesen, S. D. In Surface-enhanced Raman for monitoring toxins in water, Chemical and Biological Standoff Detection, International Society for Optics and Photonics: 2004; pp 340-348.
    53. Guo, X.; Li, J.; Arabi, M.; Wang, X.; Wang, Y.; Chen, L., Molecular-imprinting-based surface-enhanced Raman scattering sensors. Acs Sensors 2020, 5 (3), 601-619.
    54. Greeneltch, N. G.; Davis, A. S.; Valley, N. A.; Casadio, F.; Schatz, G. C.; Van Duyne, R. P.; Shah, N. C., Near-infrared surface-enhanced raman spectroscopy (NIR-SERS) for the identification of eosin Y: Theoretical calculations and evaluation of two different nanoplasmonic substrates. The Journal of Physical Chemistry A 2012, 116 (48), 11863-11869.
    55. 程光煦, 拉曼 布里淵散射2nd edition. 2007.
    56. Parobek, D.; Shenoy, G.; Zhou, F.; Peng, Z.; Ward, M.; Liu, H., Synthesizing and characterizing graphene via Raman spectroscopy: an upper-level undergraduate experiment that exposes students to Raman spectroscopy and a 2D nanomaterial. Journal of Chemical Education 2016, 93 (10), 1798-1803.
    57. Vo-Dinh, T., Surface-enhanced Raman spectroscopy using metallic nanostructures. TrAC Trends in Analytical Chemistry 1998, 17 (8-9), 557-582.
    58. Cheng, J.-X.; Xie, X. S., Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. ACS Publications: 2004; Vol. 108, pp 827-840.
    59. Weitz, D.; Garoff, S.; Gersten, J.; Nitzan, A., The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. The Journal of chemical physics 1983, 78 (9), 5324-5338.
    60. Bistaffa, M. J.; Camacho, S. A.; Pazin, W. M.; Constantino, C. J.; Oliveira Jr, O. N.; Aoki, P. H., Immunoassay platform with surface-enhanced resonance Raman scattering for detecting trace levels of SARS-CoV-2 spike protein. Talanta 2022, 123381.
    61. Smith, W., Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chemical Society Reviews 2008, 37 (5), 955-964.
    62. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry 1977, 84 (1), 1-20.
    63. Kneipp, K.; Wang, Y.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Physical review letters 1996, 76 (14), 2444.
    64. Golab, J.; Sprague, J.; Carron, K.; Schatz, G.; Van Duyne, R., A surface enhanced hyper‐Raman scattering study of pyridine adsorbed onto silver: Experiment and theory. The Journal of chemical physics 1988, 88 (12), 7942-7951.
    65. Campion, A.; Ivanecky III, J.; Child, C.; Foster, M., On the mechanism of chemical enhancement in surface-enhanced Raman scattering. Journal of the American Chemical Society 1995, 117 (47), 11807-11808.
    66. Fu, Q.; Wu, F.; Wang, B.; Bu, Y.; Draxl, C., Spatial Confinement as an Effective Strategy for Improving the Catalytic Selectivity in Acetylene Hydrogenation. ACS Applied Materials & Interfaces 2020, 12 (35), 39352-39361.
    67. Zhang, Z.; Chen, Z.; Qu, C.; Chen, L., Highly sensitive visual detection of copper ions based on the shape-dependent LSPR spectroscopy of gold nanorods. Langmuir 2014, 30 (12), 3625-3630.
    68. Gangadharan, D. T.; Xu, Z.; Liu, Y.; Izquierdo, R.; Ma, D., Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 2017, 6 (1), 153-175.
    69. Etchegoin, P. G.; Le Ru, E., A perspective on single molecule SERS: current status and future challenges. Physical Chemistry Chemical Physics 2008, 10 (40), 6079-6089.
    70. Zhou, Y.; Chen, G.; Zou, S., Radiative Decay Rate Enhancement and Quenching for Multiple Emitters near a Metal Nanoparticle Surface. The Journal of Physical Chemistry C 2021, 125 (4), 2531-2536.
    71. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical society reviews 1998, 27 (4), 241-250.
    72. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter 2002, 14 (18), R597.
    73. Huang, X.; Neretina, S.; El‐Sayed, M. A., Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced materials 2009, 21 (48), 4880-4910.
    74. Zheng, G.; de Marchi, S.; López‐Puente, V.; Sentosun, K.; Polavarapu, L.; Pérez‐Juste, I.; Hill, E. H.; Bals, S.; Liz‐Marzán, L. M.; Pastoriza‐Santos, I., Encapsulation of single plasmonic nanoparticles within ZIF‐8 and SERS analysis of the MOF flexibility. Small 2016, 12 (29), 3935-3943.
    75. Young, C.; Salunkhe, R. R.; Tang, J.; Hu, C.-C.; Shahabuddin, M.; Yanmaz, E.; Hossain, M. S. A.; Kim, J. H.; Yamauchi, Y., Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Physical Chemistry Chemical Physics 2016, 18 (42), 29308-29315.
    76. Chen, N.; Xiao, T.-H.; Luo, Z.; Kitahama, Y.; Hiramatsu, K.; Kishimoto, N.; Itoh, T.; Cheng, Z.; Goda, K., Porous carbon nanowire array for surface-enhanced Raman spectroscopy. Nature communications 2020, 11 (1), 1-8.
    77. Zhang, S.; Xiong, R.; Mahmoud, M. A.; Quigley, E. N.; Chang, H.; El-Sayed, M.; Tsukruk, V. V., Dual-excitation nanocellulose plasmonic membranes for molecular and cellular SERS detection. ACS applied materials & interfaces 2018, 10 (21), 18380-18389.
    78. Nikoobakht, B.; El-Sayed, M. A., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials 2003, 15 (10), 1957-1962.
    79. Zhang, Y.; Jia, Y.; Li, M.; Hou, L. a., Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific reports 2018, 8 (1), 1-7.
    80. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y., Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15 (9), 1794-1801.
    81. Jian, M.; Liu, B.; Liu, R.; Qu, J.; Wang, H.; Zhang, X., Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. Rsc Advances 2015, 5 (60), 48433-48441.
    82. Tanaka, S.; Kida, K.; Okita, M.; Ito, Y.; Miyake, Y., Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chemistry Letters 2012, 41 (10), 1337-1339.
    83. Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications 2011, 47 (7), 2071-2073.
    84. Abbasi, Z.; Shamsaei, E.; Leong, S. K.; Ladewig, B.; Zhang, X.; Wang, H., Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. Microporous and Mesoporous Materials 2016, 236, 28-37.
    85. Torad, N. L.; Hu, M.; Kamachi, Y.; Takai, K.; Imura, M.; Naito, M.; Yamauchi, Y., Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chemical communications 2013, 49 (25), 2521-2523.
    86. Luanwuthi, S.; Krittayavathananon, A.; Srimuk, P.; Sawangphruk, M., In situ synthesis of permselective zeolitic imidazolate framework-8/graphene oxide composites: rotating disk electrode and Langmuir adsorption isotherm. RSC Advances 2015, 5 (58), 46617-46623.
    87. Young, C.; Salunkhe, R. R.; Tang, J.; Hu, C.-C.; Shahabuddin, M.; Yanmaz, E.; Hossain, M. S. A.; Kim, J. H.; Yamauchi, Y., Correction: Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Physical Chemistry Chemical Physics 2017, 19 (33), 22596-22596.
    88. Wen, X.; Li, G.; Zhang, J.; Zhang, Q.; Peng, B.; Wong, L. M.; Wang, S.; Xiong, Q., Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering. Nanoscale 2014, 6 (1), 132-139.

    QR CODE