研究生: |
溫鈺婷 Wen, Yu-Ting |
---|---|
論文名稱: |
具二維有機鹵化金屬鈣鈦礦之光電元件研究 Study of 2D Ruddlesden-Popper Organometallic Halide Perovskites for Optoelectronic Devices |
指導教授: |
林皓武
Lin, Hao-Wu |
口試委員: |
林子超
Lin, Tzu-Chau 周鶴修 Chou, Ho-Hsiu 呂宥蓉 Lu, Yu-Jung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 143 |
中文關鍵詞: | 鈣鈦礦 、準二維鈣鈦礦 、發光二極體 、熱沉積 、太陽能電池 、光感測器 |
外文關鍵詞: | perovskite, quasi-2D perovskite, light-emitting diode, hot-casting, solar cell, photodetector |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究濕式製程有機鹵化金屬鈣鈦礦於光電元件的發展及應用,首先藉由調整鈣鈦礦前驅物的材料及比例,並配合溶劑工程處理 (solvent treatment, ST)以及不同元件結構,嘗試製作並優化純三維以及準二維之鈣鈦礦光電元件。接著利用熱沉積 (hot-casting) 的方式,嘗試藉由不同基板溫度改變鈣鈦礦結晶方式,製作不同維度之準二維有機鹵化金屬鈣鈦礦太陽能電池。最後研究純二維、準二維以及純三維的鈣鈦礦光感測器,藉由調整鈣鈦礦前驅物的比例以及有/無溶劑工程處理探討對光感測器元件特性的影響,並觀察光感測器在不同偏壓、光強度的情況下元件的表現。
第一章節簡介有機發光二極體 (organic light-emitting diodes, OLEDs)、鈣鈦礦發光二極體 (perovskite light-emitting diodes, PeLEDs)、太陽能電池以及光感測器的發展過程、工作機制以及量測原理。
第二章節,我首先探討不同溶劑工程處理對鈣鈦礦結晶的影響,接著調整純三維MAPbBr3的製程、搭配不同元件結構,製作並優化綠光MAPbBr3發光元件。鈣鈦礦前驅物以MABr: Pb(OAc)2 = 4.8:1莫耳比時,所製備之薄膜光致發光量子效率 (photoluminescence quantum yield, PLQY) 最高可達85.2%,以此製作之發光元件有最大發光功率 (power efficacy, PE) 2.24 lm/W、最大電流效率 (current efficiency, CE) 5.88 cd/A,以及最大外部量子效率 (external quantum efficiency, EQE) 1.38%。鈣鈦礦前驅物以MABr:PbBr2 = 3:1莫耳比時,所製備之薄膜PLQY最高達32.5%,以此製作之發光元件有最大發光功率5.35 lm/W、最大電流效率8.52 cd/A,以及最大外部量子效率2.42%。
第三章節,我以具苯環之有機胺陽離子作為準二維鈣鈦礦前驅物。PEABr:MABr:Pb(OAc)2之鈣鈦礦發光元件,薄膜PLQY最高可達34.8%,所製作之發光元件有最大發光功率0.31 lm/W、最大電流效率0.39 cd/A、外部量子效率0.29%。1-NMABr:MABr:Pb(OAc)2之鈣鈦礦發光元件,薄膜PLQY可達20%,所製作之發光元件最大發光功率可達0.59 lm/W、最大電流發光效率0.35 cd/A及外部量子效率0.24%。
第四章節,我以熱沉積的方式製作準二維鈣鈦礦太陽能電池,高溫的基板使鈣鈦礦結晶型態改變的同時,也使得良好溶劑快速揮發,造成鈣鈦礦結晶速度過快、難以控制其表面覆蓋度,因此藉由以溶液製程製作厚度較厚之電子傳輸層、降低鈣鈦礦溶液的濃度以及增加旋塗轉速,減少鈣鈦礦主動層之粗糙度以減緩太陽能電池漏電的情形。鈣鈦礦太陽能電池元件最高效率發生於維度為6之(1-NMA)2MA5Pb6I19,以及基板加熱溫度為90°C時,有3.79%的光電轉換效率 (power conversion efficiency, PCE) 以及65%的填充因子。
第五章節,我製作純二維(1-NMA)2PbI4光感測器、不同維度之準二維鈣鈦礦光感測器,以及純三維 MAPbI3光感測器,並且以不同偏壓及入射光強對鈣鈦礦光感測器做元件分析。準二維(1-NMA)2MA19Pb20I61光感測器具有最佳元件表現,在偏壓為-195 V、入射光強為1.6 mW/cm^2時,元件responsivity、detectivity及EQE分別有2.47 A/W、4.1×10^11 Jones及760%;操作於偏壓20 V、入射光強0.012 mW/cm^2時,responsivity、detectivity及EQE分別有4.56 A/W、1.9×10^13 Jones及1400%。
In this thesis, I focused on the development and application of solution-processed organometallic halide perovskite optoelectronic device. First, by tuning the compositions of the perovskite precursors, solvent treatments and device structures, a series of 3D and quasi-2D perovskite light-emitting diodes (PeLEDs) were fabricated and optimized. Then, I investigated 2D Ruddlesden-Popper perovskite solar cells fabricated by the hot-casting method, which is able to manipulate the crystallization mechanism of the perovskites. In the last part, I studied the multi-dimensional perovskite photodetectors. The photophysical properties of perovskite photodetectors fabricated by various perovskite precursors with the additional solvent treatments were investigated. In addition, I studied the performance of perovskite photodetectors under different bias voltages and incident light intensities.
In the introduction section, I briefly introduced the development, operation principles and measurement methodology of organic light-emitting diodes (OLEDs), PeLEDs, perovskite solar cells and perovskite photodetectors.
In the second chapter, I studied the crystallization mechanism of perovskite by solvent treatments. Afterwards, I adjusted the processes of 3D MAPbBr3 thin films and device structures to fabricate and optimize MAPbBr3 light-emitting diodes. When the composition of perovskite precursors is fixed at MABr: Pb(OAc)2 = 4.8:1, the photoluminescence quantum yield (PLQY) of the as-prepared thin film reached 85.2%. The best PeLED utilizing this film as active emission layer showed a power efficacy of 2.24 lm/W, a current efficiency of 5.88 cd/A, and an external quantum efficiency of 1.38%. When the composition of perovskite precursors is fixed at MABr: PbBr2 = 3:1, the as-prepared perovskite thin film realized a PLQY of 32.5%. The best PeLED utilizing this film as active layer exhibited a power efficacy of 5.35 lm/W, a current efficiency of 8.52 cd/A, and an external quantum efficiency of 2.42%.
In the third chapter, I utilized aromatic ammonium cations as perovskite precursors. The PEABr:MABr:Pb(OAc)2 thin film showed a PLQY of up to 34.8%. The best PeLED utilized this film as active emission layer exhibited a power efficacy of 0.31 lm/W, a current efficiency of 0.39 cd/A, and an external quantum efficiency of 0.29%. Besides, 1-NMABr:MABr:Pb(OAc)2 the thin film showed a PLQY up to 20%. The best PeLED utilized this film as active emission layer realized a power efficacy of 0.59 lm/W, a current efficiency of 0.35 cd/A, and an external quantum efficiency of 0.24%.
In the fourth chapter, I fabricated quasi-2D perovskite solar cells by hot-casting. While the crystallinity changed with a hot substrate, the good solvent also evaporated rapidly, which led to a fast crystallization speed and an uncontrollable surface coverage. In order to reduce the leakage current of solar cells, I fabricated solar cells with thicker electron-transporting layers by using solution process. Besides, a lower concentration of the perovskite precursors and a higher spinning speed of the spin-coating process were also applied to minimize the roughness of the perovskite active layer. The devices with (1-NMA)2MA5Pb6I19 (n = 6) and the 90°C substrate temperature exhibited the maximum power conversion efficiency of 3.79% with the fill factor of 65%.
In the fifth chapter, I fabricated 2D (1-NMA)2PbI4 photodetector, quasi-2D perovskite photodetectors, and 3D MAPbI3 photodetectors. I also investigated their photophysical properties at different bias voltages and incident light intensities. Quasi-2D (1-NMA)2MA19Pb20I61 photodetectors exhibited the best performance. When it was operated at -195 V and under the light intensity of 1.6 mW/cm^2, the responsivity, detectivity, and external quantum efficiency of the devices were 2.47 A/W, 4.1×10^11 Jones, and 760%, respectively. When it was operated at 20 V and under the light intensity of 0.012 mW/cm^2, the responsivity, detectivity, and external quantum efficiency of the devices were 4.56 A/W, 1.9×10^13 Jones, and 1400%, respectively.
[1] M. Pope, H. P. Kallmann, P. Magnante, The Journal of Chemical Physics 1963, 38, 2042.
[2] C. W. Tang, S. A. VanSlyke, Applied Physics Letters 1987, 51, 913.
[3] C. W. Tang, S. A. VanSlyke, C. H. Chen, Journal of Applied Physics 1989, 65, 3610.
[4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
[5] S. R. Forrest, M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, Nature 1998, 395, 151.
[6] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
[7] F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, R. H. Friend, The Journal of Physical Chemistry Letters 2014, 5, 1421.
[8] F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533.
[9] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nature Nanotechnology 2014, 9, 687.
[10] Y. H. Kim, H. Cho, H. Heo Jin, T. S. Kim, N. Myoung, C. L. Lee, H. Im Sang, T. W. Lee, Advanced Materials 2014, 27, 1248.
[11] G. Li, Z.-K. Tan, D. Di, M. L. Lai, L. Jiang, J. H.-W. Lim, R. H. Friend, N. C. Greenham, Nano Letters 2015, 15, 2640.
[12] J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, L. Lai May, H. Friend Richard, W. Huang, Advanced Materials 2015, 27, 2311.
[13] H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, Science 2015, 350, 1222.
[14] L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, E. H. Sargent, Journal of the American Chemical Society 2016, 138, 2649.
[15] N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, Nature Photonics 2016, 10, 699.
[16] Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Scholes, B. P. Rand, Nature Photonics 2017, 11,108.
[17] G. Li, Z. K. Tan, D. Di, M. L. Lai, L. Jiang, J. H. Lim, R. H. Friend, N. C. Greenham, Nano Letters 2015, 15, 2640.
[18] L. Zhao, Y. W. Yeh, N. L. Tran, F. Wu, Z. Xiao, R. A. Kerner, Y. L. Lin, G. D. Scholes, N. Yao, B. P. Rand, ACS Nano 2017, 11, 3957.
[19] J. C. de Mello, H. F. Wittmann, R. H. Friend, Advanced Materials 1997, 9, 230.
[20] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Nature Physics 2015, 11, 582.
[21] Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Nature Photonics 2014, 9, 106.
[22] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
[23] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nature Photonics 2014, 8, 506.
[24] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Journal of the American Chemical Society 2009, 131, 6050.
[25] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 2011, 3, 4088.
[26] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Scientific Reports 2012, 2, 591.
[27] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel, Journal of the American Chemical Society 2012, 134, 17396.
[28] J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, Energy & Environmental Science 2013, 6, 1739.
[29] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
[30] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, Advanced Materials 2013, 25, 3727.
[31] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, Angewandte Chemie International Edition 2014, 53, 3151.
[32] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Energy & Environmental Science 2014, 7, 3061.
[33] C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Advanced Materials 2014, 26, 6647.
[34] H.-S. Ko, J.-W. Lee, N.-G. Park, Journal of Materials Chemistry A 2015, 3, 8808.
[35] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Science 2015, 348, 1234.
[36] S.-Y. Hsiao, H.-L. Lin, W.-H. Lee, W.-L. Tsai, K.-M. Chiang, W.-Y. Liao, C.-Z. Ren-Wu, C.-Y. Chen, H.-W. Lin, Advanced Materials 2016, 28, 7013.
[37] M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, M. K. Nazeeruddin, Nature Energy 2016, 1, 15017.
[38] N. R. E. Laboratory, https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
[39] M. Hirasawa, T. Ishihara, T. Goto, Journal of the Physical Society of Japan 1994, 63, 3870.
[40] I. B. Koutselas, L. Ducasse, G. C. Papavassiliou, Journal of Physics: Condensed Matter 1996, 8, 1217.
[41] V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, A. Petrozza, Nature Communications 2014, 5, 3586.
[42] T. Ishihara, Journal of Luminescence 1994, 60, 269.
[43] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Solid State Communications 2003, 127, 619.
[44] T. C. Sum, N. Mathews, Energy & Environmental Science 2014, 7, 2518.
[45] V. Gonzalez-Pedro, E. J. Juarez-Perez, W.-S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, Nano Letters 2014, 14, 888.
[46] C.-G. Wu, C.-H. Chiang, S. H. Chang, Nanoscale 2016, 8, 4077.
[47] H.-S. Kim, N.-G. Park, The Journal of Physical Chemistry Letters 2014, 5, 2927.
[48] H.-H. Wang, Q. Chen, H. Zhou, L. Song, Z. S. Louis, N. D. Marco, Y. Fang, P. Sun, T.-B. Song, H. Chen, Y. Yang, Journal of Materials Chemistry A 2015, 3, 9108.
[49] X. Bao, Y. Wang, Q. Zhu, N. Wang, D. Zhu, J. Wang, A. Yang, R. Yang, Journal of Power Sources 2015, 297, 53.
[50] D. Jansen‐van Vuuren Ross, A. Armin, K. Pandey Ajay, L. Burn Paul, P. Meredith, Advanced Materials 2016, 28, 4766.
[51] F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini, Nature Nanotechnology 2014, 9, 780.
[52] K. J. Baeg, M. Binda, D. Natali, M. Caironi, Y. Y. Noh, Advanced Materials 2013, 25, 4267.
[53] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, Nature Nanotechnology 2012, 7, 798.
[54] M. S. Arnold, J. D. Zimmerman, C. K. Renshaw, X. Xu, R. R. Lunt, C. M. Austin, S. R. Forrest, Nano Letters 2009, 9, 3354.
[55] H.-Y. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette, Y. Yang, Nature nanotechnology 2008, 3, 543.
[56] X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, Y. Xie, Advanced Functional Materials 2014, 24, 7373.
[57] Y. Guo, C. Liu, H. Tanaka, E. Nakamura, The Journal of Physical Chemistry Letters 2015, 6, 535.
[58] V. Adinolfi, O. Ouellette, I. Saidaminov Makhsud, G. Walters, L. Abdelhady Ahmed, M. Bakr Osman, H. Sargent Edward, Advanced Materials 2016, 28, 7264.
[59] Y. Li, Z.-F. Shi, S. Li, L.-Z. Lei, H.-F. Ji, D. Wu, T.-T. Xu, Y.-T. Tian, X.-J. Li, Journal of Materials Chemistry C 2017, 5, 8355.
[60] Z. Y. Zhang, H. Y. Wang, Y. X. Zhang, Y. W. Hao, C. Sun, Y. Zhang, B. R. Gao, Q. D. Chen, H. B. Sun, Scientific Reports 2016, 6, 27286.
[61] J. C. Yu, B. Kim da, E. D. Jung, B. R. Lee, M. H. Song, Nanoscale 2016, 8, 7036.
[62] B. R. Sutherland, E. H. Sargent, Nature Photonics 2016, 10, 295.
[63] M.-H. Park, S.-H. Jeong, H.-K. Seo, C. Wolf, Y.-H. Kim, H. Kim, J. Byun, J. S. Kim, H. Cho, T.-W. Lee, Nano Energy 2017, 42, 157.
[64] L. N. Quan, Y. Zhao, F. P. García de Arquer, R. Sabatini, G. Walters, O. Voznyy, R. Comin, Y. Li, J. Z. Fan, H. Tan, J. Pan, M. Yuan, O. M. Bakr, Z. Lu, D. H. Kim, E. H. Sargent, Nano Letters 2017, 17, 3701.
[65] H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M. A. Alam, G. Gupta, J. Lou, P. M. Ajayan, M. J. Bedzyk, M. G. Kanatzidis, A. D. Mohite, Nature 2016, 536, 312.
[66] S. C. M. Myae, N. Wanyi, S. C. C., T. Hsinhan, B. Jean‐Christophe, L. Fangze, E. Jacky, M. T. J., M. A. D., K. M. G., Advanced Energy Materials 2018, 8, 1700979.
[67] M. Chunqing, S. Dong, N. Tsz‐Wai, L. Ming‐Fai, L. Chun‐Sing, Advanced Materials 2018, 30, 1800710.